1,198,923 research outputs found

    Model-driven performance evaluation for service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluation of services and service compositions in the context of model-driven service engineering. Temporal databases theory is utilised for the empirical performance evaluation of model-driven developed service systems

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Software Engineering Laboratory Ada performance study: Results and implications

    Get PDF
    The SEL is an organization sponsored by NASA/GSFC to investigate the effectiveness of software engineering technologies applied to the development of applications software. The SEL was created in 1977 and has three organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland, Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation. The goals of the SEL are as follows: (1) to understand the software development process in the GSFC environments; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include the Ada Performance Study Report. This paper describes the background of Ada in the Flight Dynamics Division (FDD), the objectives and scope of the Ada Performance Study, the measurement approach used, the performance tests performed, the major test results, and the implications for future FDD Ada development efforts

    Generating a Performance Stochastic Model from UML Specifications

    Full text link
    Since its initiation by Connie Smith, the process of Software Performance Engineering (SPE) is becoming a growing concern. The idea is to bring performance evaluation into the software design process. This suitable methodology allows software designers to determine the performance of software during design. Several approaches have been proposed to provide such techniques. Some of them propose to derive from a UML (Unified Modeling Language) model a performance model such as Stochastic Petri Net (SPN) or Stochastic process Algebra (SPA) models. Our work belongs to the same category. We propose to derive from a UML model a Stochastic Automata Network (SAN) in order to obtain performance predictions. Our approach is more flexible due to the SAN modularity and its high resemblance to UML' state-chart diagram

    Towards a Theory of Software Development Expertise

    Full text link
    Software development includes diverse tasks such as implementing new features, analyzing requirements, and fixing bugs. Being an expert in those tasks requires a certain set of skills, knowledge, and experience. Several studies investigated individual aspects of software development expertise, but what is missing is a comprehensive theory. We present a first conceptual theory of software development expertise that is grounded in data from a mixed-methods survey with 335 software developers and in literature on expertise and expert performance. Our theory currently focuses on programming, but already provides valuable insights for researchers, developers, and employers. The theory describes important properties of software development expertise and which factors foster or hinder its formation, including how developers' performance may decline over time. Moreover, our quantitative results show that developers' expertise self-assessments are context-dependent and that experience is not necessarily related to expertise.Comment: 14 pages, 5 figures, 26th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018), ACM, 201

    Proof-of-concept engineering workflow demonstrator

    No full text
    When Microsoft needed a proof-of-concept implementation of bespoke engineering workflow software for their customer, BAE Systems, it called on the software engineering skills and experience of the Microsoft Institute for High Performance Computing. BAE Systems was looking into converting their in-house SOLAR software suite to run on the MS Compute Cluster Server product with 64-bit MPI support in conjunction with an extended Windows Workflow environment for use by their engineer

    Happy software developers solve problems better: psychological measurements in empirical software engineering

    Full text link
    For more than 30 years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human aspects. Among the skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affects-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.Comment: 33 pages, 11 figures, published at Peer
    • 

    corecore