23 research outputs found

    Preference relations based unsupervised rank aggregation for metasearch

    Get PDF
    Rank aggregation mechanisms have been used in solving problems from various domains such as bioinformatics, natural language processing, information retrieval, etc. Metasearch is one such application where a user gives a query to the metasearch engine, and the metasearch engine forwards the query to multiple individual search engines. Results or rankings returned by these individual search engines are combined using rank aggregation algorithms to produce the final result to be displayed to the user. We identify few aspects that should be kept in mind for designing any rank aggregation algorithms for metasearch. For example, generally equal importance is given to the input rankings while performing the aggregation. However, depending on the indexed set of web pages, features considered for ranking, ranking functions used etc. by the individual search engines, the individual rankings may be of different qualities. So, the aggregation algorithm should give more weight to the better rankings while giving less weight to others. Also, since the aggregation is performed when the user is waiting for response, the operations performed in the algorithm need to be light weight. Moreover, getting supervised data for rank aggregation problem is often difficult. In this paper, we present an unsupervised rank aggregation algorithm that is suitable for metasearch and addresses the aspects mentioned above. We also perform detailed experimental evaluation of the proposed algorithm on four different benchmark datasets having ground truth information. Apart from the unsupervised Kendall-Tau distance measure, several supervised evaluation measures are used for performance comparison. Experimental results demonstrate the efficacy of the proposed algorithm over baseline methods in terms of supervised evaluation metrics. Through these experiments we also show that Kendall-Tau distance metric may not be suitable for evaluating rank aggregation algorithms for metasearch

    The Use of Clustering Methods in Memory-Based Collaborative Filtering for Ranking-Based Recommendation Systems

    Get PDF
    This research explores the application of clustering techniques and frequency normalization in collaborative filtering to enhance the performance of ranking-based recommendation systems. Collaborative filtering is a popular approach in recommendation systems that relies on user-item interaction data. In ranking-based recommendation systems, the goal is to provide users with a personalized list of items, sorted by their predicted relevance. In this study, we propose a novel approach that combines clustering and frequency normalization techniques. Clustering, in the context of data analysis, is a technique used to organize and group together users or items that share similar characteristics or features. This method proves beneficial in enhancing recommendation accuracy by uncovering hidden patterns within the data. Additionally, frequency normalization is utilized to mitigate potential biases in user-item interaction data, ensuring fair and unbiased recommendations. The research methodology involves data preprocessing, clustering algorithm selection, frequency normalization techniques, and evaluation metrics. Experimental results demonstrate that the proposed method outperforms traditional collaborative filtering approaches in terms of ranking accuracy and recommendation quality. This approach has the potential to enhance recommendation systems across various domains, including e-commerce, content recommendation, and personalized advertising

    Iterative Voting, Control and Sentiment Analysis

    Get PDF
    In multi-agent systems agents often need to take a collective decision based on the preferences of individuals. A voting rule is used to decide which decision to take, mapping the agents' preferences over the possible candidate decisions into a winning decision for the collection of agents. In these kind of scenarios acting strategically can be seen in two opposite way. On one hand it may be desirable that agents do not have any incentive to act strategically. That is, to misreport their preferences in order to influence the result of the voting rule in their favor or acting on the structure of the election to change the outcome. On the other hand manipulation can be used to improve the quality of the outcome by enlarging the consensus of the winner. These two different scenarios are studied in this thesis. The first one by modeling and describing a natural form of control named ``replacement control'' and characterizing for several voting rules its computational complexity. The second scenario is studied in the form of iterative voting frameworks where individuals are allowed to change their preferences to change the outcome of the election. Computational social choice techniques can be used in very different scenarios. This work reports a first attempt to introduce the use of voting procedures in the field of sentiment analysis. In this area computer scientists extract the opinion of the community about a specific item. This opinion is extracted aggregating the opinion expressed by each individual which leaves a text in a blog or social network about the given item. We studied and proposed a new aggregation method which can improve performances of sentiment analysis, this new technique is a new variance of a well-known voting rule called Borda

    Exploiting the conceptual space in hybrid recommender systems: a semantic-based approach

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, octubre de 200
    corecore