375 research outputs found

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework

    Full text link
    The generative Artificial Intelligence (AI) tools based on Large Language Models (LLMs) use billions of parameters to extensively analyse large datasets and extract critical private information such as, context, specific details, identifying information etc. This have raised serious threats to user privacy and reluctance to use such tools. This article proposes the conceptual model called PrivChatGPT, a privacy-preserving model for LLMs that consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data. To demonstrate its applicability, we show how a private mechanism could be integrated into the existing model for training LLMs to protect user privacy; specifically, we employed differential privacy and private training using Reinforcement Learning (RL). We measure the privacy loss and evaluate the measure of uncertainty or randomness once differential privacy is applied. It further recursively evaluates the level of privacy guarantees and the measure of uncertainty of public database and resources, during each update when new information is added for training purposes. To critically evaluate the use of differential privacy for private LLMs, we hypothetically compared other mechanisms e..g, Blockchain, private information retrieval, randomisation, for various performance measures such as the model performance and accuracy, computational complexity, privacy vs. utility etc. We conclude that differential privacy, randomisation, and obfuscation can impact utility and performance of trained models, conversely, the use of ToR, Blockchain, and PIR may introduce additional computational complexity and high training latency. We believe that the proposed model could be used as a benchmark for proposing privacy preserving LLMs for generative AI tools

    Contributions to Context-Aware Smart Healthcare: A Security and Privacy Perspective

    Get PDF
    Les tecnologies de la informació i la comunicació han canviat les nostres vides de manera irreversible. La indústria sanitària, una de les indústries més grans i de major creixement, està dedicant molts esforços per adoptar les últimes tecnologies en la pràctica mèdica diària. Per tant, no és sorprenent que els paradigmes sanitaris estiguin en constant evolució cercant serveis més eficients, eficaços i sostenibles. En aquest context, el potencial de la computació ubiqua mitjançant telèfons intel·ligents, rellotges intel·ligents i altres dispositius IoT ha esdevingut fonamental per recopilar grans volums de dades, especialment relacionats amb l'estat de salut i la ubicació de les persones. Les millores en les capacitats de detecció juntament amb l'aparició de xarxes de telecomunicacions d'alta velocitat han facilitat la implementació d'entorns sensibles al context, com les cases i les ciutats intel·ligents, capaços d'adaptar-se a les necessitats dels ciutadans. La interacció entre la computació ubiqua i els entorns sensibles al context va obrir la porta al paradigma de la salut intel·ligent, centrat en la prestació de serveis de salut personalitzats i de valor afegit mitjançant l'explotació de grans quantitats de dades sanitàries, de mobilitat i contextuals. No obstant, la gestió de dades sanitàries, des de la seva recollida fins a la seva anàlisi, planteja una sèrie de problemes desafiants a causa del seu caràcter altament confidencial. Aquesta tesi té per objectiu abordar diversos reptes de seguretat i privadesa dins del paradigma de la salut intel·ligent. Els resultats d'aquesta tesi pretenen ajudar a la comunitat científica a millorar la seguretat dels entorns intel·ligents del futur, així com la privadesa dels ciutadans respecte a les seves dades personals i sanitàries.Las tecnologías de la información y la comunicación han cambiado nuestras vidas de forma irreversible. La industria sanitaria, una de las industrias más grandes y de mayor crecimiento, está dedicando muchos esfuerzos por adoptar las últimas tecnologías en la práctica médica diaria. Por tanto, no es sorprendente que los paradigmas sanitarios estén en constante evolución en busca de servicios más eficientes, eficaces y sostenibles. En este contexto, el potencial de la computación ubicua mediante teléfonos inteligentes, relojes inteligentes, dispositivos wearables y otros dispositivos IoT ha sido fundamental para recopilar grandes volúmenes de datos, especialmente relacionados con el estado de salud y la localización de las personas. Las mejoras en las capacidades de detección junto con la aparición de redes de telecomunicaciones de alta velocidad han facilitado la implementación de entornos sensibles al contexto, como las casas y las ciudades inteligentes, capaces de adaptarse a las necesidades de los ciudadanos. La interacción entre la computación ubicua y los entornos sensibles al contexto abrió la puerta al paradigma de la salud inteligente, centrado en la prestación de servicios de salud personalizados y de valor añadido mediante la explotación significativa de grandes cantidades de datos sanitarios, de movilidad y contextuales. No obstante, la gestión de datos sanitarios, desde su recogida hasta su análisis, plantea una serie de cuestiones desafiantes debido a su naturaleza altamente confidencial. Esta tesis tiene por objetivo abordar varios retos de seguridad y privacidad dentro del paradigma de la salud inteligente. Los resultados de esta tesis pretenden ayudar a la comunidad científica a mejorar la seguridad de los entornos inteligentes del futuro, así como la privacidad de los ciudadanos con respecto a sus datos personales y sanitarios.Information and communication technologies have irreversibly changed our lives. The healthcare industry, one of the world’s largest and fastest-growing industries, is dedicating many efforts in adopting the latest technologies into daily medical practice. It is not therefore surprising that healthcare paradigms are constantly evolving seeking for more efficient, effective and sustainable services. In this context, the potential of ubiquitous computing through smartphones, smartwatches, wearables and IoT devices has become fundamental to collect large volumes of data, including people's health status and people’s location. The enhanced sensing capabilities together with the emergence of high-speed telecommunication networks have facilitated the implementation of context-aware environments, such as smart homes and smart cities, able to adapt themselves to the citizens needs. The interplay between ubiquitous computing and context-aware environments opened the door to the so-called smart health paradigm, focused on the provision of added-value personalised health services by meaningfully exploiting vast amounts of health, mobility and contextual data. However, the management of health data, from their gathering to their analysis, arises a number of challenging issues due to their highly confidential nature. In particular, this dissertation addresses several security and privacy challenges within the smart health paradigm. The results of this dissertation are intended to help the research community to enhance the security of the intelligent environments of the future as well as the privacy of the citizens regarding their personal and health data

    Data Analysis Methods for Software Systems

    Get PDF
    Using statistics, econometrics, machine learning, and functional data analysis methods, we evaluate the consequences of the lockdown during the COVID-19 pandemics for wage inequality and unemployment. We deduce that these two indicators mostly reacted to the first lockdown from March till June 2020. Also, analysing wage inequality, we conduct analysis separately for males and females and different age groups.We noticed that young females were affected mostly by the lockdown.Nevertheless, all the groups reacted to the lockdown at some level

    Understanding the Usage of Anonymous Onion Services: Empirical Experiments to Study Criminal Activities in the Tor Network

    Get PDF
    Technology is the new host of life, and with each passing year, developments in digitalization make it easier to destroy our understanding of authenticity. A man is more than his distorted shadow on Facebook wall. Another essential shadow dwells under anonymity.The aim of this thesis is to understand the usage of onion services in the Tor anonymity network. To be more precise the aim is to discover and measure human activities on Tor and on anonymous onion websites. We establish novel facts in the anonymous online environment. We solve technical problems, such as web-crawling and scraping to gather data. We represent new findings on how onion services hide illegal activities. The results are merged with wider range of anonymous onion services usage.We selected to cast light to the criminal dark side of the Tor network, mainly black marketplaces and hacking. This is a somewhat factitious selection from the wide range of Tor use. However, an archetype villain is found in nearly every story so naturally, for the sake of being interesting, we selected criminal phenomenon to study. To be clear, the Tor network is developed and utilised for legal online privacy and several other essential ways.The first finding is that as the Tor network becomes more popular also illegal activities become wide spread. Tor and virtual currencies are already transforming drug trade. Anonymous high-class marketplaces are difficult for the law enforcement to interrupt.On the other hand, now illegal activities are paradoxically more public than ever: everyone can access these onion sites and browse the product listings. The illegal trade is transparent to be followed. For example, by the means of web-crawling and scraping, we produced nearly real-time picture of the trade in Finland following one of the marketplaces on Tor. As a result, statistics shed light on substance consumption habits: the second study estimates that sales totalled over two million euros between Finnish buyers and sellers.Due to the network’s anonymity and nature of illegal sales, reputation systems have replaced the rule of law: a buyer trusts the seller’s reputation because the law is not guaranteeing the delivery. The only available information is the seller’s reputation and capacity which were both associated with drug sales as we prove.Finally, we will identify the limits of online anonymity ranging from technical limitations to operation security dangers. Technology is merely a communication channel and major criminal activities still happen in the physical world. For instance, a drug trade requires that the seller sends the products using post service to the buyer’s address. Before that the seller has acquired enormous amounts of illegal drugs. The buyer has to give away his address to the seller who could later be placed under arrest with a list of customers addresses. Furthermore, we show case by case how criminals reveal and leak their critical identity information. The law enforcement agencies are experienced to investigate all of these aspects even if the Tor network itself is secure

    Extended Abstracts of the Fourth Privacy Enhancing Technologies Convention (PET-CON 2009.1)

    Get PDF
    PET-CON, the Privacy Enhancing Technologies Convention, is a forum for researchers, students, developers, and other interested people to discuss novel research, current development and techniques in the area of Privacy Enhancing Technologies. PET-CON was first conceived in June 2007 at the 7th International PET Symposium in Ottawa, Canada. The idea was to set up a bi-annual convention in or nearby Germany to be able to meet more often than only once a year at some major conference
    corecore