1,349 research outputs found

    Genetic algorithms with guided and local search strategies for university course timetabling

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2011 IEEEThe university course timetabling problem (UCTP) is a combinatorial optimization problem, in which a set of events has to be scheduled into time slots and located into suitable rooms. The design of course timetables for academic institutions is a very difficult task because it is an NP-hard problem. This paper investigates genetic algorithms (GAs) with a guided search strategy and local search (LS) techniques for the UCTP. The guided search strategy is used to create offspring into the population based on a data structure that stores information extracted from good individuals of previous generations. The LS techniques use their exploitive search ability to improve the search efficiency of the proposed GAs and the quality of individuals. The proposed GAs are tested on two sets of benchmark problems in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed GAs are able to produce promising results for the UCTP.This work was supported by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1

    A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling

    Get PDF
    Copyright @ Springer Science + Business Media. All rights reserved.The post enrolment course timetabling problem (PECTP) is one type of university course timetabling problems, in which a set of events has to be scheduled in time slots and located in suitable rooms according to the student enrolment data. The PECTP is an NP-hard combinatorial optimisation problem and hence is very difficult to solve to optimality. This paper proposes a hybrid approach to solve the PECTP in two phases. In the first phase, a guided search genetic algorithm is applied to solve the PECTP. This guided search genetic algorithm, integrates a guided search strategy and some local search techniques, where the guided search strategy uses a data structure that stores useful information extracted from previous good individuals to guide the generation of offspring into the population and the local search techniques are used to improve the quality of individuals. In the second phase, a tabu search heuristic is further used on the best solution obtained by the first phase to improve the optimality of the solution if possible. The proposed hybrid approach is tested on a set of benchmark PECTPs taken from the international timetabling competition in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed hybrid approach is able to produce promising results for the test PECTPs.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and Grant EP/E060722/02

    A memetic algorithm for the university course timetabling problem

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEThe design of course timetables for academic institutions is a very hectic job due to the exponential number of possible feasible timetables with respect to the problem size. This process involves lots of constraints that must be respected and a huge search space to be explored, even if the size of the problem input is not significantly large. On the other hand, the problem itself does not have a widely approved definition, since different institutions face different variations of the problem. This paper presents a memetic algorithm that integrates two local search methods into the genetic algorithm for solving the university course timetabling problem (UCTP). These two local search methods use their exploitive search ability to improve the explorative search ability of genetic algorithms. The experimental results indicate that the proposed memetic algorithm is efficient for solving the UCTP

    A guided search non-dominated sorting genetic algorithm for the multi-objective university course timetabling problem

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2011.The university course timetabling problem is a typical combinatorial optimization problem. This paper tackles the multi-objective university course timetabling problem (MOUCTP) and proposes a guided search non-dominated sorting genetic algorithm to solve the MOUCTP. The proposed algorithm integrates a guided search technique, which uses a memory to store useful information extracted from previous good solutions to guide the generation of new solutions, and two local search schemes to enhance its performance for the MOUCTP. The experimental results based on a set of test problems show that the proposed algorithm is efficient for solving the MOUCTP

    A general framework of multi-population methods with clustering in undetectable dynamic environments

    Get PDF
    Copyright @ 2011 IEEETo solve dynamic optimization problems, multiple population methods are used to enhance the population diversity for an algorithm with the aim of maintaining multiple populations in different sub-areas in the fitness landscape. Many experimental studies have shown that locating and tracking multiple relatively good optima rather than a single global optimum is an effective idea in dynamic environments. However, several challenges need to be addressed when multi-population methods are applied, e.g., how to create multiple populations, how to maintain them in different sub-areas, and how to deal with the situation where changes can not be detected or predicted. To address these issues, this paper investigates a hierarchical clustering method to locate and track multiple optima for dynamic optimization problems. To deal with undetectable dynamic environments, this paper applies the random immigrants method without change detection based on a mechanism that can automatically reduce redundant individuals in the search space throughout the run. These methods are implemented into several research areas, including particle swarm optimization, genetic algorithm, and differential evolution. An experimental study is conducted based on the moving peaks benchmark to test the performance with several other algorithms from the literature. The experimental results show the efficiency of the clustering method for locating and tracking multiple optima in comparison with other algorithms based on multi-population methods on the moving peaks benchmark

    Design, Engineering, and Experimental Analysis of a Simulated Annealing Approach to the Post-Enrolment Course Timetabling Problem

    Full text link
    The post-enrolment course timetabling (PE-CTT) is one of the most studied timetabling problems, for which many instances and results are available. In this work we design a metaheuristic approach based on Simulated Annealing to solve the PE-CTT. We consider all the different variants of the problem that have been proposed in the literature and we perform a comprehensive experimental analysis on all the public instances available. The outcome is that our solver, properly engineered and tuned, performs very well on all cases, providing the new best known results on many instances and state-of-the-art values for the others

    An efficient memetic, permutation-based evolutionary algorithm for real-world train timetabling

    Get PDF
    Train timetabling is a difficult and very tightly constrained combinatorial problem that deals with the construction of train schedules. We focus on the particular problem of local reconstruction of the schedule following a small perturbation, seeking minimisation of the total accumulated delay by adapting times of departure and arrival for each train and allocation of resources (tracks, routing nodes, etc.). We describe a permutation-based evolutionary algorithm that relies on a semi-greedy heuristic to gradually reconstruct the schedule by inserting trains one after the other following the permutation. This algorithm can be hybridised with ILOG commercial MIP programming tool CPLEX in a coarse-grained manner: the evolutionary part is used to quickly obtain a good but suboptimal solution and this intermediate solution is refined using CPLEX. Experimental results are presented on a large real-world case involving more than one million variables and 2 million constraints. Results are surprisingly good as the evolutionary algorithm, alone or hybridised, produces excellent solutions much faster than CPLEX alone
    corecore