565 research outputs found

    Passive Source Localization Using Compressively Sensed Towed Array

    Get PDF
    The objective of this work is to estimate the sparse angular power spectrum using a towed acoustic pressure sensor (APS) array. In a passive towed array sonar, any reduction in the analog sensor signal conditioning receiver hardware housed inside the array tube, significantly improves the signal integrity and hence the localization performance. In this paper, a novel sparse acoustic pressure sensor (SAPS) array architecture is proposed to estimate the direction of arrival (DOA) of multiple acoustic sources. Bearing localization is effectively achieved by customizing the Capons spatial filter algorithm to suit the SAPS array architecture. Apart from the Monte Carlo simulations, the acoustic performance of the SAPS array with compressively sensed minimum variance distortionless response (CS-MVDR) filter is demonstrated using a real passive towed array data. The proposed sparse towed array architecture promises a significant reduction in the analog signal acquisition receiver hardware, transmission data rate, number of snapshots and software complexity.Defence Science Journal, 2013, 63(6), pp.630-635, DOI:http://dx.doi.org/10.14429/dsj.63.576

    The significance of passive acoustic array-configurations on sperm whale range estimation when using the hyperbolic algorithm

    Get PDF
    In cetacean monitoring for population estimation, behavioural studies or mitigation, traditional visual observations are being augmented by the use of Passive Acoustic Monitoring (PAM) techniques that use the creature’s vocalisations for localisation. The design of hydrophone configurations is evaluated for sperm whale (Physeter macrocephalus) range estimation to meet the requirements of the current mitigation regulations for a safety zone and behaviour research. This thesis uses the Time Difference of Arrival (TDOA) of cetacean vocalisations with a three-dimensional hyperbolic localisation algorithm. A MATLAB simulator has been developed to model array-configurations and to assess their performance in source range estimation for both homogeneous and non-homogeneous sound speed profiles (SSP). The non-homogeneous medium is modelled on a Bellhop ray trace model, using data collected from the Gulf of Mexico. The sperm whale clicks are chosen as an exemplar of a distinctive underwater sound. The simulator is tested with a separate synthetic source generator which produced a set of TDOAs from a known source location. The performance in source range estimation for Square, Trapezium, Triangular, Shifted-pair and Y-shape geometries is tested. The Y-shape geometry, with four elements and aperture-length of 120m, is the most accurate, giving an error of ±10m over slant ranges of 500m in a homogeneous medium, and 300m in a non-homogeneous medium. However, for towed array deployments, the Y-shape array is sensitive to angle-positioning-error when the geometry is seriously distorted. The Shifted-pair geometry overcomes these limits, performing an initial accuracy of ±30m when the vessel either moves in a straight line or turns to port or starboard. It constitutes a recommendable array-configuration for towed array deployments. The thesis demonstrates that the number of receivers, the array-geometry and the arrayaperture are important parameters to consider when designing and deploying a hydrophone array. It is shown that certain array-configurations can significantly improve the accuracy of source range estimation. Recommendations are made concerning preferred array-configurations for use with PAM systems

    Towed-array calibration

    Get PDF

    Cancellation of Towing Ship Interference in Passive SONAR in a Shallow Ocean Environment

    Get PDF
    Towed array sonars are preferred for detecting stealthy underwater targets that emit faint acoustic signals in the ocean, especially in shallow waters. However, the towing ship being near to the array behaves as a loud target, introducing additional interfering signals to the array, severely affecting the detection and classification of potential targets. Canceling this underlying interference signal is a challenging task and is investigated in this paper for a shallow ocean operational scenario where the problem is more critical due to the multipath phenomenon. A method exploiting the eigenvector analysis of spatio-temporal covariance matrix based on space time adaptive processing is proposed for suppressing tow ship interference and thus improving target detection. The developed algorithm learns the interference patterns in the presence of target signals to mitigate the interference across azimuth and to remove the spectral leakage of own-ship. The algorithm is statistically analyzed through a set of relevant metrics and is tested on simulated data that are equivalent to the data received by a towed linear array of acoustic sensors in a shallow ocean. The results indicate a reduction of 20-25dB in the tow ship interference power while the detection of long-range low SNR targets remain largely unaffected with minimal power-loss. In addition, it is demonstrated that the spectral leakage of tow ship, on multiple beams across the azimuth, due to multipath, is also alleviated leading to superior classification capabilities. The robustness of the proposed algorithm is validated by the open ocean experiment in the coastal shallow region of the Arabian Sea at Off-Kochi area of India, which produced results in close agreement with the simulations. A comparison of the simulation and experimental results with the existing PCI and ECA methods is also carried out, suggesting the proposed method is quite effective in suppressing the tow ship interference and is immensely beneficial for the detection and classification of long-range targets

    Development and testing of a dual accelerometer vector sensor for AUV acoustic surveys

    Get PDF
    This paper presents the design, manufacturing and testing of a Dual Accelerometer Vector Sensor (DAVS). The device was built within the activities of theWiMUST project, supported under the Horizon 2020 Framework Programme, which aims to improve the efficiency of the methodologies used to perform geophysical acoustic surveys at sea by the use of Autonomous Underwater Vehicles (AUVs). The DAVS has the potential to contribute to this aim in various ways, for example, owing to its spatial filtering capability, it may reduce the amount of post processing by discriminating the bottom from the surface reflections. Additionally, its compact size allows easier integration with AUVs and hence facilitates the vehicle manoeuvrability compared to the classical towed arrays. The present paper is focused on results related to acoustic wave azimuth estimation as an example of its spatial filtering capabilities. The DAVS device consists of two tri-axial accelerometers and one hydrophone moulded in one unit. Sensitivity and directionality of these three sensors were measured in a tank, whilst the direction estimation capabilities of the accelerometers paired with the hydrophone, forming a vector sensor, were evaluated on a Medusa Class AUV, which was sailing around a deployed sound source. Results of these measurements are presented in this paper.European Union [645141]info:eu-repo/semantics/publishedVersio

    Tracking sperm whales using passive acoustics and particle filters

    No full text
    Passive acoustics provides a powerful tool for marine mammal research and mitigation of the risk posed by high energy anthropogenic acoustic activities through monitoring animal positions. Animal vocalisations can be detected and utilised in poor visibility conditions and while animals are dived. Marine mammal research is often conducted on restricted financial budgets by non-government organisations and academic institutions from boats or ships towing hydrophone arrays often comprising only two elements. The arrival time-delay of the acoustic wavefront from the vocalising animals across the array aperture is computed, often using freely available software, and typically regarded as the bearing of the animal to the array. This methodology is limited as it provides no ranging information and, until a boat manoeuvre is performed, whether the animal is to the left or right of the array remains ambiguous. Methods of determining range that have been suggested either negate the fact the animal is moving, rely on robust detection of acoustic reflections, rely on accurate equipment calibration and knowledge of the animal’s orientation or require modification of hydrophone equipment. There is a clear need to develop an improved method of estimating animal position as relative bearing, range and elevation to a hydrophone array or boat based on time-delay measurements. To avoid the costs of upgrading hydrophone arrays, and potentially the size of the vessels required to tow them, a software solution is desirable. This thesis proposes that the source location be modelled as a probability density function and that the source location is estimated as the mean. This is developed into a practical method using particle filters to track sperm whales. Sperm whales are the ideal subject species for this kind of development because the high sound pressure levels of their impulsive vocalisations (up to 236 dB re 1 ?Pa) makes them relatively simple to detect. Simulation tracking results demonstrate particle filters are capable of tracking a manoeuvring target using time-delay measurements. Tracking results for real data are presented and compared to the pseudotrack reconstructed from a tag equipped with accelerometers, magnetometers, a depth sensor and an acoustic recorder placed on the subject animal. For the majority of datasets the animal is tracked to a position relatively close to the surface sighting position. Sperm whales are typically encountered in groups, therefore a viable tracking solution needs to be capable of tracking multiple animals. A multiple hypothesis tracking method is proposed and tested for associating received vocalisations with animals, whereby vocalisations are correctly associated for periods exceeding 15 minute
    corecore