764 research outputs found

    Implementing Performance Competitive Logical Recovery

    Full text link
    New hardware platforms, e.g. cloud, multi-core, etc., have led to a reconsideration of database system architecture. Our Deuteronomy project separates transactional functionality from data management functionality, enabling a flexible response to exploiting new platforms. This separation requires, however, that recovery is described logically. In this paper, we extend current recovery methods to work in this logical setting. While this is straightforward in principle, performance is an issue. We show how ARIES style recovery optimizations can work for logical recovery where page information is not captured on the log. In side-by-side performance experiments using a common log, we compare logical recovery with a state-of-the art ARIES style recovery implementation and show that logical redo performance can be competitive.Comment: VLDB201

    Optimizing large databases : a study on index structures

    Get PDF
    The following research is about comparing index structures for large databases, both analytically and experimentally. The study is divided into two main parts. The first part is centered around hash-based indexing and B-trees. Both of which are set in the context of the widely known external memory model. The second part presents the cache-oblivious model, describing its implications on the design of algorithms for any arbitrary pair of memory levels...La siguiente investigación trata sobre comparar estructuras de índice para grandes bases de datos, tanto analíticamente, como experimentalmente. El estudio se encuentra dividido en dos partes principales. La primera parte se centra en índices de hash y B-trees. Ambas estructuras son estudiadas en el contexto del modelo de acceso de disco tradicional. La segunda parte presenta al modelo cache-oblivious, incluyendo sus implicaciones en el diseño de algoritmos para niveles de memoria arbitrarios..

    Fast Feedforward Networks

    Full text link
    We break the linear link between the layer size and its inference cost by introducing the fast feedforward (FFF) architecture, a log-time alternative to feedforward networks. We demonstrate that FFFs are up to 220x faster than feedforward networks, up to 6x faster than mixture-of-experts networks, and exhibit better training properties than mixtures of experts thanks to noiseless conditional execution. Pushing FFFs to the limit, we show that they can use as little as 1% of layer neurons for inference in vision transformers while preserving 94.2% of predictive performance.Comment: 12 pages, 6 figures, 4 table

    Survey of Vector Database Management Systems

    Full text link
    There are now over 20 commercial vector database management systems (VDBMSs), all produced within the past five years. But embedding-based retrieval has been studied for over ten years, and similarity search a staggering half century and more. Driving this shift from algorithms to systems are new data intensive applications, notably large language models, that demand vast stores of unstructured data coupled with reliable, secure, fast, and scalable query processing capability. A variety of new data management techniques now exist for addressing these needs, however there is no comprehensive survey to thoroughly review these techniques and systems. We start by identifying five main obstacles to vector data management, namely vagueness of semantic similarity, large size of vectors, high cost of similarity comparison, lack of natural partitioning that can be used for indexing, and difficulty of efficiently answering hybrid queries that require both attributes and vectors. Overcoming these obstacles has led to new approaches to query processing, storage and indexing, and query optimization and execution. For query processing, a variety of similarity scores and query types are now well understood; for storage and indexing, techniques include vector compression, namely quantization, and partitioning based on randomization, learning partitioning, and navigable partitioning; for query optimization and execution, we describe new operators for hybrid queries, as well as techniques for plan enumeration, plan selection, and hardware accelerated execution. These techniques lead to a variety of VDBMSs across a spectrum of design and runtime characteristics, including native systems specialized for vectors and extended systems that incorporate vector capabilities into existing systems. We then discuss benchmarks, and finally we outline research challenges and point the direction for future work.Comment: 25 page

    External-Memory Graph Algorithms

    Get PDF
    We present a collection of new techniques for designing and analyzing efficient external-memory algorithms for graph problems and illustrate how these techniques can be applied to a wide variety of specific problems. Our results include: Proximate-neighboring. We present a simple method for deriving external-memory lower bounds via reductions from a problem we call the “proximate neighbors” problem. We use this technique to derive non-trivial lower bounds for such problems as list ranking, expression tree evaluation, and connected components. PRAM simulation. We give methods for efficiently simulating PRAM computations in external memory, even for some cases in which the PRAM algorithm is not work-optimal. We apply this to derive a number of optimal (and simple) external-memory graph algorithms. Time-forward processing. We present a general technique for evaluating circuits (or “circuit-like” computations) in external memory. We also usethis in a deterministic list ranking algorithm. Deterministic 3-coloring of a cycle. We give several optimal methods for 3-coloring a cycle, which can be used as a subroutine for finding large independent sets for list ranking. Our ideas go beyond a straightforward PRAM simulation, and may be of independent interest. External depth-first search. We discuss a method for performing depth first search and solving related problems efficiently in external memory. Our technique can be used in conjunction with ideas due to Ullman and Yannakakis in order to solve graph problems involving closed semi-ring computations even when their assumption that vertices fit in main memory does not hold. Our techniques apply to a number of problems, including list ranking, which we discuss in detail, finding Euler tours, expression-tree evaluation, centroid decomposition of a tree, least-common ancestors, minimum spanning tree verification, connected and biconnected components, minimum spanning forest, ear decomposition, topological sorting, reachability, graph drawing, and visibility representation

    Consistent, Durable, and Safe Memory Management for Byte-addressable Non Volatile Main Memory

    Get PDF
    This paper presents three building blocks for enabling the efficient and safe design of persistent data stores for emerging non-volatile memory technologies. Taking the fullest advantage of the low latency and high bandwidths of emerging memories such as phase change memory (PCM), spin torque, and memristor necessitates a serious look at placing these persistent storage technologies on the main memory bus. Doing so, however, introduces critical challenges of not sacrificing the data reliability and consistency that users demand from storage. This paper introduces techniques for (1) robust wear-aware memory allocation, (2) preventing of erroneous writes, and (3) consistency-preserving updates that are cacheefficient. We show through our evaluation that these techniques are efficiently implementable and effective by demonstrating a B+-tree implementation modified to make full use of our toolkit.

    Algorithm Engineering for fundamental Sorting and Graph Problems

    Get PDF
    Fundamental Algorithms build a basis knowledge for every computer science undergraduate or a professional programmer. It is a set of basic techniques one can find in any (good) coursebook on algorithms and data structures. In this thesis we try to close the gap between theoretically worst-case optimal classical algorithms and the real-world circumstances one face under the assumptions imposed by the data size, limited main memory or available parallelism
    corecore