56 research outputs found

    IST-2000-30148 I-METRA: D3.2 Implementation of relevant algorithms

    Get PDF
    This deliverable provides a high level description of the software developed within the I-METRA project following the selection reported in D3.1 "Design, Analysis and Selection of Suitable Algorithms".Preprin

    Efficient Radio Resource Allocation Schemes and Code Optimizations for High Speed Downlink Packet Access Transmission

    No full text
    An important enhancement on the Wideband Code Division Multiple Access (WCDMA) air interface of the 3G mobile communications, High Speed Downlink Packet Access (HSDPA) standard has been launched to realize higher spectral utilization efficiency. It introduces the features of multicode CDMA transmission and Adaptive Modulation and Coding (AMC) technique, which makes radio resource allocation feasible and essential. This thesis studies channel-aware resource allocation schemes, coupled with fast power adjustment and spreading code optimization techniques, for the HSDPA standard operating over frequency selective channel. A two-group resource allocation scheme is developed in order to achieve a promising balance between performance enhancement and time efficiency. It only requires calculating two parameters to specify the allocations of discrete bit rates and transmitted symbol energies in all channels. The thesis develops the calculation methods of the two parameters for interference-free and interference-present channels, respectively. For the interference-present channels, the performance of two-group allocation can be further enhanced by applying a clustering-based channel removal scheme. In order to make the two-group approach more time-efficient, reduction in matrix inversions in optimum energy calculation is then discussed. When the Minimum Mean Square Error (MMSE) equalizer is applied, optimum energy allocation can be calculated by iterating a set of eigenvalues and eigenvectors. By using the MMSE Successive Interference Cancellation (SIC) receiver, the optimum energies are calculated recursively combined with an optimum channel ordering scheme for enhancement in both system performance and time efficiency. This thesis then studies the signature optimization methods with multipath channel and examines their system performances when combined with different resource allocation methods. Two multipath-aware signature optimization methods are developed by applying iterative optimization techniques, for the system using MMSE equalizer and MMSE precoder respectively. A PAM system using complex signature sequences is also examined for improving resource utilization efficiency, where two receiving schemes are proposed to fully take advantage of PAM features. In addition by applying a short chip sampling window, a Singular Value Decomposition (SVD) based interference-free signature design method is presented

    IST-2000-30148 I-METRA: D4 Performance evaluation

    Get PDF
    This document considers the performance of multiantenna transmit/receive techniques in high-speed downlink and uplink packet access. The evaluation is done using both link and system level simulations by taking into account link adaptation and packet retransmissions. The document is based on the initial studies carried out in deliverables D3.1 and D3.2.Preprin

    Performance Analysis of 3G Communication Network

    Get PDF
    In this project, third generation (3G) technologies research had been carried out to design and optimization conditions for 3G network. The 3G wireless mobile communication networks are growing at an ever faster rate, and this is likely to continue in the foreseeable future. Some services such as e-mail, web browsing etc allow the transition of the network from circuit switched to packet switched operation, resulting in increased overall network performance. Higher reliability, better coverage and services, higher capacity, mobility management, and wireless multimedia are all parts of the network performance. Throughput and spectral efficiency are fundamental parameters in capacity planning for 3G cellular network deployments. This project investigates also the downlink (DL) and uplink (UL) throughput and spectral efficiency performance of the standard Universal Mobile Telecommunications system (UMTS) system for different scenarios of user and different technologies. Power consumption comparison for different mobile technology is also discussed. The analysis can significantly help system engineers to obtain crucial performance characteristics of 3G network. At the end of the paper, coverage area of 3G from one of the mobile network in Malaysia is presented

    Equalization of Third-Order Intermodulation Products in Wideband Direct Conversion Receivers

    Get PDF
    This paper reports a SAW-less direct-conversion receiver which utilizes a mixed-signal feedforward path to regenerate and adaptively cancel IM3 products, thus accomplishing system-level linearization. The receiver system performance is dominated by a custom integrated RF front end implemented in 130-nm CMOS and achieves an uncorrected out-of-band IIP3 of -7.1 dBm under the worst-case UMTS FDD Region 1 blocking specifications. Under IM3 equalization, the receiver achieves an effective IIP3 of +5.3 dBm and meets the UMTS BER sensitivity requirement with 3.7 dB of margin

    Esquemas de pré-codificação IA com IB-DFE para sistemas MC-CDMA

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesTo achieve high bit rates, needed to meet the quality of service requirements of future multimedia applications, multi-carrier code division multiple access (MC-CDMA) has been considered as a candidate air-interface. Interference alignment (IA) is a promising technique that allows high capacity gains in interfering channels. On the other hand, iterative block decision feedback equalization (IB-DFE) based receivers can efficiently exploit the inherent space-frequency diversity of the MIMO MC-CDMA systems. In this thesis we proposed an IA precoding at the transmitter with IB-DFE based processing at the receiver for MC-CDMA systems. The IA precoding is applied at chip level instead of the data symbols level, as in the conventional IA based systems. The receiver is designed in two steps: first the equalizers based on zero forcing (ZF) or minimum mean square error (MMSE) are used to remove the aligned users´ interference. Then and after a whitening noise process, an IB-DFE based equalizer is designed to remove both the residual inter-user aligned and inter-carrier interferences. The results have shown that the obtained performance is very close to the one obtained by the optimal matched filter, with few iterations at the receiver side.Para atingir maiores ritmos de transmissão, as futures aplicações multimédia necessitam de atingir a qualidade de serviço necessária. Para isso, o multi-carrier code division multiple access (MC-CDMA) tem sido apontado como um forte candidato para interface ar dos futuros sistemas celulares. O Interference Alignment (IA) ou alinhamento de interferência é uma técnica promissora que permite ter altos ganhos de capacidade em canais com interferência. Por outro lado, temos receptores baseados no conceito iterative block decision feedback equalization(IB-DFE) que conseguem tirar partido, de uma forma eficiente, da inerente diversidade espaço-frequência dos sistemas MIMO MC-CDMA. Nesta dissertação é implementada uma pré-codificação baseada no conceito de IA considerando três transmissores (ou estações base) juntamente, com um processamento IB-DFE no receptor para sistemas MC-CDMA.A pré-codificação é aplicada ao nível de chip em vez de ser aplicado ao nível dos dados. O receptor é projectado em dois passos: em primeiro lugar equalizadores baseados em ZF ou em MMSE são utilizados para remover a interferência alinhada dos restantes utilizadores. De seguida, e após aplicar um processo de branqueamento do ruído ao sinal à saída do primeiro equalizador, um segundo equalizador baseado em IB-DFE é projectado para remover a interferência inter-utilizador residual e também a interferência residual entre portadoras. Os resultados obtidos mostraram-se satisfatórios na remoção da interferência obtendo-se um desempenho muito próximo do obtido considerando um filtro adaptado

    Advanced receivers for high data rate mobile communications

    Get PDF
    Improving the spectral efficiency is a key issue in the future wireless communication systems since the spectrum is a scarce resource. Both the number of users as well the demanded data rates are increasing all the time. Furthermore, in mobile communications the wireless link is required to be reliable even when the mobile is in a fast moving vehicle. Using Multiple-Input Multiple-Output (MIMO) antennas is a well known technique to provide higher spectral efficiency as well as better link reliability. Additionally, higher order modulation methods can be used to provide higher data rates. In order to benefit from these enhancements in practise, sophisticated signal processing methods as well as accurate estimates of time-varying wireless channel parameters are needed. This thesis addresses the problem of designing multi-antenna receivers in high data rate systems. The case of multiple transmit antennas is also considered. System specific features of High Speed Downlink Packet Access (HSDPA) which is part of 3rd generation (3G) Wideband Code Division Multiple Access (WCDMA) evolution are exploited in channel estimation methods and in MIMO receiver design. Additionally, complexity reduction methods for Minimum Mean Square Error (MMSE) equalization are addressed. Blind channel estimation methods are spectrally efficient, since no extra resources are needed for pilot signals. However, in mobile communications accurate estimates are needed also in fast fading channels. Consequently, semi-blind channel estimation methods where the receiver combines blind and pilot based channel estimation are an appealing alternative. In this thesis blind and semi-blind channel estimation methods based on knowledge of multiple spreading codes are derived. A novel semi-blind combining scheme for code multiplexed pilot signal and blind estimation is proposed. Another important factor in receiver design criteria is the structure of interference in the received signals. Interference mitigation techniques in MIMO systems have been shown to be potential methods for providing improved performance. A chip level inter-antenna interference cancellation method has been developed in this thesis for HSDPA. Furthermore, this multi-stage ordered interference canceler is combined with the semi-blind channel estimation scheme to enhance the system performance further.Langattomassa tiedonsiirrossa radiospektrin tehokas käyttö on tulevaisuuden suuria haasteita. Taajuuksia on käytössä vain rajoitetusti, kun taas käyttäjien määrä sekä vaaditut siirtonopeudet kasvavat jatkuvasti. Lisäksi langattomien yhteyksien on toimittava luotettavasti myös nopeasti liikkuvissa kulkuneuvoissa. Moniantennijärjestelmät, joissa on useita antenneita sekä tukiasemissa että päätelaitteissa mahdollistavat radiospektrin tehokkaamman käytön sekä parantavat yhteyksien laatua. Tiedonsiirtonopeutta voidaan myös kasvattaa erilaisilla modulaatiotekniikoilla. Hyötyjen saavutamiseksi käytännössä tarvitaan sekä kehittyneitä vastaanotinrakenteita että tarkkoja estimaatteja aikamuuttuvasta radiokanavasta. Tässä työssä on kehitetty vastaanotinrakenteita ja kanavan estimointimenetelmiä kolmannen sukupolven (3G) nopeiden datayhteyksien (HSPA) järjestelmissä. Työssä on johdettu menetelmiä, jotka hyödyntävät HSPA järjestelmien erikoispiirteitä tehokkaasti. Lisäksi on kehitetty laskennallisesti tehokkaita menetelmiä vastaanottimien signaalinkäsittelyyn. Ns. sokeat menetelmät mahdollistavat taajuuskaistan tehokkaan käytön, koska ne eivät vaadi tunnettuja harjoitussignaaleja. Mobiileissa tietolikennejärjestelmissä radiokanava saattaa kuitenkin muuttua hyvin nopeasti, jonka vuoksi kanavan estimoinnissa on tyypillisesti hyödynnetty tunnettua pilottisignaalia. Yhdistämällä pilottipohjainen ja sokea kanavaestimointimenetelmä, voidaan saavuttaa molempien menetelmien edut. Tässä työssä kehitettiin sokeita kanavaestimointimenetelmiä, jotka hyödyntävät useita tunnettuja hajoituskoodeja. Sokean ja koodijakoiseen pilottisignaaliin pohjautuvien kanavan estimaattien yhdistämiseksi kehitettiin uusi menetelmä. Signaalin laatua ja siten vastaanottimen suorituskykyä voidaan langattomissa järjestelmissä parantaa vaimentamalla interferenssiä eli häiriöitä. Vastaanottimen toimintaa voidaan tehostaa oleellisesti, jos häiriösignaalin rakenne tunnetaan. Käytettäessä useampaa lähetysantennia HSPA järjestelmissä vastaanotetussa signaalissa olevia häiriötä voidaan kumota usealla eri tasolla. Tässä työssä on kehitetty chippitasolla häiriöitä kumoava vastaanotinrakenne, joka hyödyntää HSPA järjestelmän ominaisuuksia. Vastaanottimen suorituskykyä on edelleen parannettu yhdistämällä se aiemmin esitettyyn puolisokeaan kanavan estimointimenetelmään.reviewe

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF
    corecore