8,113 research outputs found

    Performance Comparison of Ad-hoc Retrieval Models over Full-text vs. Titles of Documents

    Get PDF
    While there are many studies on information retrieval models using full-text, there are presently no comparison studies of full-text retrieval vs. retrieval only over the titles of documents. On the one hand, the full-text of documents like scientific papers is not always available due to, e. g., copyright policies of academic publishers. On the other hand, conducting a search based on titles alone has strong limitations. Titles are short and therefore may not contain enough information to yield satisfactory search results. In this paper, we compare different retrieval models regarding their search performance on the full-text vs. only titles of documents. We use different datasets, including the three digital library datasets: EconBiz, IREON, and PubMed. The results show that it is possible to build effective title-based retrieval models that provide competitive results comparable to full-text retrieval. The difference between the average evaluation results of the best title-based retrieval models is only % less than those of the best full-text-based retrieval models

    A Deep Relevance Matching Model for Ad-hoc Retrieval

    Full text link
    In recent years, deep neural networks have led to exciting breakthroughs in speech recognition, computer vision, and natural language processing (NLP) tasks. However, there have been few positive results of deep models on ad-hoc retrieval tasks. This is partially due to the fact that many important characteristics of the ad-hoc retrieval task have not been well addressed in deep models yet. Typically, the ad-hoc retrieval task is formalized as a matching problem between two pieces of text in existing work using deep models, and treated equivalent to many NLP tasks such as paraphrase identification, question answering and automatic conversation. However, we argue that the ad-hoc retrieval task is mainly about relevance matching while most NLP matching tasks concern semantic matching, and there are some fundamental differences between these two matching tasks. Successful relevance matching requires proper handling of the exact matching signals, query term importance, and diverse matching requirements. In this paper, we propose a novel deep relevance matching model (DRMM) for ad-hoc retrieval. Specifically, our model employs a joint deep architecture at the query term level for relevance matching. By using matching histogram mapping, a feed forward matching network, and a term gating network, we can effectively deal with the three relevance matching factors mentioned above. Experimental results on two representative benchmark collections show that our model can significantly outperform some well-known retrieval models as well as state-of-the-art deep matching models.Comment: CIKM 2016, long pape

    EveTAR: Building a Large-Scale Multi-Task Test Collection over Arabic Tweets

    Full text link
    This article introduces a new language-independent approach for creating a large-scale high-quality test collection of tweets that supports multiple information retrieval (IR) tasks without running a shared-task campaign. The adopted approach (demonstrated over Arabic tweets) designs the collection around significant (i.e., popular) events, which enables the development of topics that represent frequent information needs of Twitter users for which rich content exists. That inherently facilitates the support of multiple tasks that generally revolve around events, namely event detection, ad-hoc search, timeline generation, and real-time summarization. The key highlights of the approach include diversifying the judgment pool via interactive search and multiple manually-crafted queries per topic, collecting high-quality annotations via crowd-workers for relevancy and in-house annotators for novelty, filtering out low-agreement topics and inaccessible tweets, and providing multiple subsets of the collection for better availability. Applying our methodology on Arabic tweets resulted in EveTAR , the first freely-available tweet test collection for multiple IR tasks. EveTAR includes a crawl of 355M Arabic tweets and covers 50 significant events for which about 62K tweets were judged with substantial average inter-annotator agreement (Kappa value of 0.71). We demonstrate the usability of EveTAR by evaluating existing algorithms in the respective tasks. Results indicate that the new collection can support reliable ranking of IR systems that is comparable to similar TREC collections, while providing strong baseline results for future studies over Arabic tweets

    Learning to Rank Academic Experts in the DBLP Dataset

    Full text link
    Expert finding is an information retrieval task that is concerned with the search for the most knowledgeable people with respect to a specific topic, and the search is based on documents that describe people's activities. The task involves taking a user query as input and returning a list of people who are sorted by their level of expertise with respect to the user query. Despite recent interest in the area, the current state-of-the-art techniques lack in principled approaches for optimally combining different sources of evidence. This article proposes two frameworks for combining multiple estimators of expertise. These estimators are derived from textual contents, from graph-structure of the citation patterns for the community of experts, and from profile information about the experts. More specifically, this article explores the use of supervised learning to rank methods, as well as rank aggregation approaches, for combing all of the estimators of expertise. Several supervised learning algorithms, which are representative of the pointwise, pairwise and listwise approaches, were tested, and various state-of-the-art data fusion techniques were also explored for the rank aggregation framework. Experiments that were performed on a dataset of academic publications from the Computer Science domain attest the adequacy of the proposed approaches.Comment: Expert Systems, 2013. arXiv admin note: text overlap with arXiv:1302.041

    End-to-end Learning for Short Text Expansion

    Full text link
    Effectively making sense of short texts is a critical task for many real world applications such as search engines, social media services, and recommender systems. The task is particularly challenging as a short text contains very sparse information, often too sparse for a machine learning algorithm to pick up useful signals. A common practice for analyzing short text is to first expand it with external information, which is usually harvested from a large collection of longer texts. In literature, short text expansion has been done with all kinds of heuristics. We propose an end-to-end solution that automatically learns how to expand short text to optimize a given learning task. A novel deep memory network is proposed to automatically find relevant information from a collection of longer documents and reformulate the short text through a gating mechanism. Using short text classification as a demonstrating task, we show that the deep memory network significantly outperforms classical text expansion methods with comprehensive experiments on real world data sets.Comment: KDD'201

    Towards Query Logs for Privacy Studies: On Deriving Search Queries from Questions

    Get PDF
    Translating verbose information needs into crisp search queries is a phenomenon that is ubiquitous but hardly understood. Insights into this process could be valuable in several applications, including synthesizing large privacy-friendly query logs from public Web sources which are readily available to the academic research community. In this work, we take a step towards understanding query formulation by tapping into the rich potential of community question answering (CQA) forums. Specifically, we sample natural language (NL) questions spanning diverse themes from the Stack Exchange platform, and conduct a large-scale conversion experiment where crowdworkers submit search queries they would use when looking for equivalent information. We provide a careful analysis of this data, accounting for possible sources of bias during conversion, along with insights into user-specific linguistic patterns and search behaviors. We release a dataset of 7,000 question-query pairs from this study to facilitate further research on query understanding.Comment: ECIR 2020 Short Pape

    POLIS: a probabilistic summarisation logic for structured documents

    Get PDF
    PhDAs the availability of structured documents, formatted in markup languages such as SGML, RDF, or XML, increases, retrieval systems increasingly focus on the retrieval of document-elements, rather than entire documents. Additionally, abstraction layers in the form of formalised retrieval logics have allowed developers to include search facilities into numerous applications, without the need of having detailed knowledge of retrieval models. Although automatic document summarisation has been recognised as a useful tool for reducing the workload of information system users, very few such abstraction layers have been developed for the task of automatic document summarisation. This thesis describes the development of an abstraction logic for summarisation, called POLIS, which provides users (such as developers or knowledge engineers) with a high-level access to summarisation facilities. Furthermore, POLIS allows users to exploit the hierarchical information provided by structured documents. The development of POLIS is carried out in a step-by-step way. We start by defining a series of probabilistic summarisation models, which provide weights to document-elements at a user selected level. These summarisation models are those accessible through POLIS. The formal definition of POLIS is performed in three steps. We start by providing a syntax for POLIS, through which users/knowledge engineers interact with the logic. This is followed by a definition of the logics semantics. Finally, we provide details of an implementation of POLIS. The final chapters of this dissertation are concerned with the evaluation of POLIS, which is conducted in two stages. Firstly, we evaluate the performance of the summarisation models by applying POLIS to two test collections, the DUC AQUAINT corpus, and the INEX IEEE corpus. This is followed by application scenarios for POLIS, in which we discuss how POLIS can be used in specific IR tasks

    Sub-word indexing and blind relevance feedback for English, Bengali, Hindi, and Marathi IR

    Get PDF
    The Forum for Information Retrieval Evaluation (FIRE) provides document collections, topics, and relevance assessments for information retrieval (IR) experiments on Indian languages. Several research questions are explored in this paper: 1. how to create create a simple, languageindependent corpus-based stemmer, 2. how to identify sub-words and which types of sub-words are suitable as indexing units, and 3. how to apply blind relevance feedback on sub-words and how feedback term selection is affected by the type of the indexing unit. More than 140 IR experiments are conducted using the BM25 retrieval model on the topic titles and descriptions (TD) for the FIRE 2008 English, Bengali, Hindi, and Marathi document collections. The major findings are: The corpus-based stemming approach is effective as a knowledge-light term conation step and useful in case of few language-specific resources. For English, the corpusbased stemmer performs nearly as well as the Porter stemmer and significantly better than the baseline of indexing words when combined with query expansion. In combination with blind relevance feedback, it also performs significantly better than the baseline for Bengali and Marathi IR. Sub-words such as consonant-vowel sequences and word prefixes can yield similar or better performance in comparison to word indexing. There is no best performing method for all languages. For English, indexing using the Porter stemmer performs best, for Bengali and Marathi, overlapping 3-grams obtain the best result, and for Hindi, 4-prefixes yield the highest MAP. However, in combination with blind relevance feedback using 10 documents and 20 terms, 6-prefixes for English and 4-prefixes for Bengali, Hindi, and Marathi IR yield the highest MAP. Sub-word identification is a general case of decompounding. It results in one or more index terms for a single word form and increases the number of index terms but decreases their average length. The corresponding retrieval experiments show that relevance feedback on sub-words benefits from selecting a larger number of index terms in comparison with retrieval on word forms. Similarly, selecting the number of relevance feedback terms depending on the ratio of word vocabulary size to sub-word vocabulary size almost always slightly increases information retrieval effectiveness compared to using a fixed number of terms for different languages
    • …
    corecore