107 research outputs found

    Intelligent MANET optimisation system

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In the literature, various Mobile Ad hoc NETwork (MANET) routing protocols proposed. Each performs the best under specific context conditions, for example under high mobility or less volatile topologies. In existing MANET, the degradation in the routing protocol performance is always associated with changes in the network context. To date, no MANET routing protocol is able to produce optimal performance under all possible conditions. The core aim of this thesis is to solve the routing problem in mobile Ad hoc networks by introducing an optimum system that is in charge of the selection of the running routing protocol at all times, the system proposed in this thesis aims to address the degradation mentioned above. This optimisation system is a novel approach that can cope with the network performance’s degradation problem by switching to other routing protocol. The optimisation system proposed for MANET in this thesis adaptively selects the best routing protocol using an Artificial Intelligence mechanism according to the network context. In this thesis, MANET modelling helps in understanding the network performance through different contexts, as well as the models’ support to the optimisation system. Therefore, one of the main contributions of this thesis is the utilisation and comparison of various modelling techniques to create representative MANET performance models. Moreover, the proposed system uses an optimisation method to select the optimal communication routing protocol for the network context. Therefore, to build the proposed system, different optimisation techniques were utilised and compared to identify the best optimisation technique for the MANET intelligent system, which is also an important contribution of this thesis. The parameters selected to describe the network context were the network size and average mobility. The proposed system then functions by varying the routing mechanism with the time to keep the network performance at the best level. The selected protocol has been shown to produce a combination of: higher throughput, lower delay, fewer retransmission attempts, less data drop, and lower load, and was thus chosen on this basis. Validation test results indicate that the identified protocol can achieve both a better network performance quality than other routing protocols and a minimum cost function of 4.4%. The Ad hoc On Demand Distance Vector (AODV) protocol comes in second with a cost minimisation function of 27.5%, and the Optimised Link State Routing (OLSR) algorithm comes in third with a cost minimisation function of 29.8%. Finally, The Dynamic Source Routing (DSR) algorithm comes in last with a cost minimisation function of 38.3%

    Performance metrics and routing in vehicular ad hoc networks

    Get PDF
    The aim of this thesis is to propose a method for enhancing the performance of Vehicular Ad hoc Networks (VANETs). The focus is on a routing protocol where performance metrics are used to inform the routing decisions made. The thesis begins by analysing routing protocols in a random mobility scenario with a wide range of node densities. A Cellular Automata algorithm is subsequently applied in order to create a mobility model of a highway, and wide range of density and transmission range are tested. Performance metrics are introduced to assist the prediction of likely route failure. The Good Link Availability (GLA) and Good Route Availability (GRA) metrics are proposed which can be used for a pre-emptive action that has the potential to give better performance. The implementation framework for this method using the AODV routing protocol is also discussed. The main outcomes of this research can be summarised as identifying and formulating methods for pre-emptive actions using a Cellular Automata with NS-2 to simulate VANETs, and the implementation method within the AODV routing protocol

    Attaining Realistic Simulations of Mobile Ad-hoc NETworks

    Get PDF
    Mobile Ad-hoc Networks (MANET) are comprised of wireless systems that communicate without the assistance of centrally managed routers or base stations. MANET research and development has increased due to computing technologies offering smaller, faster, smarter, and more power efficient platforms to operate on. Largely the testing and evaluation of new and existing MANET protocols has resided in simulation environments. This is due in part to the complexities and expenses incurred when conducting real world tests. Many researchers have come to recognize that these current simulations tend to assume away critical components of the MANET domain. These assumptions are made either to simplify the physical layer of the simulation so that the protocol can be tested or out of necessity because the current simulation platforms are not capable of providing a more realistic physical layer simulation environment. This thesis is focused on addressing these assumptions that affect the physical layer of the MANET protocol by gathering data in the real world and then modifying the simulation environment to model as closely as possible to the gathered results. This modified environment is then compared to the basic MANET simulation environment by analyzing packet delivery and propagation effects of both models

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Including context in a routing algorithm for the internet of things

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia InformáticaThe “Internet of Things” assumes that a large number of devices which are used on a daily basis will eventually become connected to the Internet. This scenario will provide room for a large set of new applications, however the network connections of an enormous set of nodes, which can be connected and disconnected, can move around and which have limitations with regards to their processing and communication capabilities, raises the need for the development of new message routing algorithms, different from those being in use today. In this thesis, a contribution is made towards the development of this type of algorithms. In particular, the idea which is tested is whether routing algorithms can improve their performance at various levels, such as, message delivery time, number of messages lost, power consumption, etc., if in the routing decisions these algorithms can make use of the concept of “Context”. Within the framework of this thesis, the “Context” is the organized collection of information which the routing algorithm collects from the environment surrounding the network nodes, and which allows it to make better routing decisions. This information can be related to low-level issues, such as, node location, power required to send a message, etc., as well as, with constraints related to the application, such as, message priority, maximum delivery time, etc. In order to evaluate this approach, this thesis proposes a routing algorithm called C-AODV. As the name suggests, it is based on the ADOV algorithm, however it is modified in several aspects; in particular, the possibility of using information collected from the context can be utilized to improve message routing. In order to test the proposed solution, several tests were performed on the NS-3 simulator which allowed the evaluation of the algorithm functionalities. The tests performed indicate that the proposed solution is valid

    Evaluation of on-demand routing in mobile ad hoc networks and proposal for a secure routing protocol

    Get PDF
    Secure routing Mobile Ad hoc Networks (MANETs) has emerged as an important MANET research area. Initial work in MANET focused mainly on the problem of providing efficient mechanisms for finding paths in very dynamic networks, without considering the security of the routing process. Because of this, a number of attacks exploit these routing vulnerabilities to manipulate MANETs. In this thesis, we performed an in-depth evaluation and performance analysis of existing MANET Routing protocols, identifying Dynamic Source Routing (DSR) as the most robust (based on throughput, latency and routing overhead) which can be secured with negligible routing efficiency trade-off. We describe security threats, specifically showing their effects on DSR. We proposed a new routing protocol, named Authenticated Source Routing for Ad hoc Networks (ASRAN) which is an out-of-band certification-based, authenticated source routing protocol with modifications to the route acquisition process of DSR to defeat all identified attacks. Simulation studies confirm that ASRAN has a good trade-off balance in reference to the addition of security and routing efficiency

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Routing in multi-hop Ad Hoc networks: an Experimental Approach

    Get PDF
    In this thesis we investigate the efficiency of routing protocols for Mobile Ad Hoc networks (MANETs) by adopting an experimental approach. MANET routing protocols have been mainly evaluated through simulations which often introduce simplifying assumptions (e.g., radio propagation model) and mask important real characteristics. To avoid these modeling approximations, it is necessary to complement simulation with experiments on real MANETs. This work provides a contribution in this direction reporting our experiences learned by these real measurements. By setting up MANET prototypes, firstly we investigate IEEE 802.11 behavior in single­hop MANETs, secondly we focus on an innovative analysis of routing protocols in multi­hop MANETs by varying scenarios. To the best of our knowledge, our medium­scale scenario composed of 23 nodes represents one of the largest MANET testbed. Our experimental results highlight that, in contrast with MANET community, by using proactive routing protocols the overall system gains in scalability, performance and efficiency. These results encourage us identifying in this last class Hazy Sighted Link State (HSLS) as a more suitable protocol. A further contribution of this thesis is hence to design, develop and test an enhanced version of HSLS, strengthened with a mechanism to guarantee the reliability of LSU packets without additional control overhead, and a module to support middleware-network interactions as proposed by the MobileMAN project (EUIST-FP5-FET-Open-IST-2001-38113)

    Integrated Architecture for Configuration and Service Management in MANET Environments

    Full text link
    Esta tesis nos ha permitido trasladar algunos conceptos teóricos de la computación ubicua a escenarios reales, identificando las necesidades específicas de diferentes tipos de aplicaciones. Con el fin de alcanzar este objetivo, proponemos dos prototipos que proporcionan servicios sensibles al contexto en diferentes entornos, tales como conferencias o salas de recuperación en hospitales. Estos prototipos experimentales explotan la tecnología Bluetooth para ofrecer información basada en las preferencias del usuario. En ambos casos, hemos llevado a cabo algunos experimentos con el fin de evaluar el comportamiento de los sistemas y su rendimento. También abordamos en esta tesis el problema de la autoconfiguración de redes MANET basadas en el estándar 802.11 a través de dos soluciones novedosas. La primera es una solución centralizada que se basa en la tecnología Bluetooth, mientras la segunda es una solución distribuida que no necesita recurrir a ninguna tecnología adicional, ya que se basa en el uso del parámetro SSID. Ambos métodos se han diseñado para permitir que usuarios no expertos puedan unirse a una red MANET de forma transparente, proporcionando una configuración automática, rápida, y fiable de los terminales. Los resultados experimentales en implementaciones reales nos han permitido evaluar el rendimiento de las soluciones propuestas y demostrar que las estaciones cercanas se pueden configurar en pocos segundos. Además, hemos comparado ambas soluciones entre sí para poner de manifiesto las diferentes ventajas y desventajas en cuanto a rendimento. La principal contribución de esta tesis es EasyMANET, una plataforma ampliable y configurable cuyo objetivo es automatizar lo máximo posible las tareas que afectan a la configuración y puesta en marcha de redes MANET, de modo que su uso sea más simple y accesible.Cano Reyes, J. (2012). Integrated Architecture for Configuration and Service Management in MANET Environments [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14675Palanci

    A Unified Wormhole Attack Detection Framework for Mobile Ad hoc Networks

    Get PDF
    The Internet is experiencing an evolution towards a ubiquitous network paradigm, via the so-called internet-of-things (IoT), where small wireless computing devices like sensors and actuators are integrated into daily activities. Simultaneously, infrastructure-less systems such as mobile ad hoc networks (MANET) are gaining popularity since they provide the possibility for devices in wireless sensor networks or vehicular ad hoc networks to share measured and monitored information without having to be connected to a base station. While MANETs offer many advantages, including self-configurability and application in rural areas which lack network infrastructure, they also present major challenges especially in regard to routing security. In a highly dynamic MANET, where nodes arbitrarily join and leave the network, it is difficult to ensure that nodes are trustworthy for multi-hop routing. Wormhole attacks belong to most severe routing threats because they are able to disrupt a major part of the network traffic, while concomitantly being extremely difficult to detect. This thesis presents a new unified wormhole attack detection framework which is effective for all known wormhole types, alongside incurring low false positive rates, network loads and computational time, for a variety of diverse MANET scenarios. The framework makes three original technical contributions: i) a new accurate wormhole detection algorithm based on packet traversal time and hop count analysis (TTHCA) which identifies infected routes, ii) an enhanced, dynamic traversal time per hop analysis (TTpHA) detection model which is adaptable to node radio range fluctuations, and iii) a method for automatically detecting time measurement tampering in both TTHCA and TTpHA. The thesis findings indicate that this new wormhole detection framework provides significant performance improvements compared to other existing solutions by accurately, efficiently and robustly detecting all wormhole variants under a wide range of network conditions
    • …
    corecore