866 research outputs found

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Performance analysis and tuning in multicore environments

    Get PDF
    Performance analysis is the task of monitor the behavior of a program execution. The main goal is to find out the possible adjustments that might be done in order improve the performance. To be able to get that improvement it is necessary to find the different causes of overhead. Nowadays we are already in the multicore era, but there is a gap between the level of development of the two main divisions of multicore technology (hardware and software). When we talk about multicore we are also speaking of shared memory systems, on this master thesis we talk about the issues involved on the performance analysis and tuning of applications running specifically in a shared Memory system. We move one step ahead to take the performance analysis to another level by analyzing the applications structure and patterns. We also present some tools specifically addressed to the performance analysis of OpenMP multithread application. At the end we present the results of some experiments performed with a set of OpenMP scientific application.Análisis de rendimiento es el área de estudio encargada de monitorizar el comportamiento de la ejecución de programas informáticos. El principal objetivo es encontrar los posibles ajustes que serán necesarios para mejorar el rendimiento. Para poder obtener esa mejora es necesario encontrar las principales causas de overhead. Actualmente estamos sumergidos en la era multicore, pero existe una brecha entre el nivel de desarrollo de sus dos principales divisiones (hardware y software). Cuando hablamos de multicore también estamos hablando de sistemas de memoria compartida. Nosotros damos un paso más al abordar el análisis de rendimiento a otro nivel por medio del estudio de la estructura de las aplicaciones y sus patrones. También presentamos herramientas de análisis de aplicaciones que son específicas para el análisis de rendimiento de aplicaciones paralelas desarrolladas con OpenMP. Al final presentamos los resultados de algunos experimentos realizados con un grupo de aplicaciones científicas desarrolladas bajo este modelo de programación.L'Anàlisi de rendiment és l'àrea d'estudi encarregada de monitorar el comportament de l'execució de programes informàtics. El principal objectiu és trobar els possibles ajustaments que seran necessaris per a millorar el rendiment. Per a poder obtenir aquesta millora és necessari trobar les principals causes de l'overhead (excessos de computació no productiva). Actualment estem immersos en l'era multicore, però existeix una rasa entre el nivell de desenvolupament de les seves dues principals divisions (maquinari i programari). Quan parlam de multicore, també estem parlant de sistemes de memòria compartida. Nosaltres donem un pas més per a abordar l'anàlisi de rendiment en un altre nivell per mitjà de l'estudi de l'estructura de les aplicacions i els seus patrons. També presentem eines d'anàlisis d'aplicacions que són específiques per a l'anàlisi de rendiment d'aplicacions paral·leles desenvolupades amb OpenMP. Al final, presentem els resultats d'alguns experiments realitzats amb un grup d'aplicacions científiques desenvolupades sota aquest model de programació
    • …
    corecore