3,158 research outputs found

    Performance bounds of opportunistic scheduling in wireless networks

    Get PDF
    In this paper, we study the performance of opportunistic scheduling in wireless networks from the perspective of information and entropy. In opportunistic scheduling, we allocate a limited number of channels to a certain number of nodes so as to maximize the network performance. Due to the inherent uncertainty of the system input represented by random variables with certain probability distributions, even under the optimal scheduling strategy, we may not achieve the best network performance. In our proposed model, we mathematically formulate the relationship between system uncertainty characterized by entropy and network performance, i.e., we give the lower and upper bounds of network performance with given entropy of the uncertain input. Based on this result, we can determine quantitatively the impact of system uncertainty on the performance of of opportunistic scheduling in wireless networks. ©2010 IEEE.published_or_final_versionThe IEEE Conference and Exhibition on Global Telecommunications Conference (GLOBECOM 2010), Miami, FL., 6-10 December 2010. In Proceedings of GLOBECOM 2010, 2010, p. 1-

    Multiuser Scheduling in a Markov-modeled Downlink using Randomly Delayed ARQ Feedback

    Full text link
    We focus on the downlink of a cellular system, which corresponds to the bulk of the data transfer in such wireless systems. We address the problem of opportunistic multiuser scheduling under imperfect channel state information, by exploiting the memory inherent in the channel. In our setting, the channel between the base station and each user is modeled by a two-state Markov chain and the scheduled user sends back an ARQ feedback signal that arrives at the scheduler with a random delay that is i.i.d across users and time. The scheduler indirectly estimates the channel via accumulated delayed-ARQ feedback and uses this information to make scheduling decisions. We formulate a throughput maximization problem as a partially observable Markov decision process (POMDP). For the case of two users in the system, we show that a greedy policy is sum throughput optimal for any distribution on the ARQ feedback delay. For the case of more than two users, we prove that the greedy policy is suboptimal and demonstrate, via numerical studies, that it has near optimal performance. We show that the greedy policy can be implemented by a simple algorithm that does not require the statistics of the underlying Markov channel or the ARQ feedback delay, thus making it robust against errors in system parameter estimation. Establishing an equivalence between the two-user system and a genie-aided system, we obtain a simple closed form expression for the sum capacity of the Markov-modeled downlink. We further derive inner and outer bounds on the capacity region of the Markov-modeled downlink and tighten these bounds for special cases of the system parameters.Comment: Contains 22 pages, 6 figures and 8 tables; revised version including additional analytical and numerical results; work submitted, Feb 2010, to IEEE Transactions on Information Theory, revised April 2011; authors can be reached at [email protected]/[email protected]/[email protected]

    Throughput Scaling of Wireless Networks With Random Connections

    Full text link
    This work studies the throughput scaling laws of ad hoc wireless networks in the limit of a large number of nodes. A random connections model is assumed in which the channel connections between the nodes are drawn independently from a common distribution. Transmitting nodes are subject to an on-off strategy, and receiving nodes employ conventional single-user decoding. The following results are proven: 1) For a class of connection models with finite mean and variance, the throughput scaling is upper-bounded by O(n1/3)O(n^{1/3}) for single-hop schemes, and O(n1/2)O(n^{1/2}) for two-hop (and multihop) schemes. 2) The Θ(n1/2)\Theta (n^{1/2}) throughput scaling is achievable for a specific connection model by a two-hop opportunistic relaying scheme, which employs full, but only local channel state information (CSI) at the receivers, and partial CSI at the transmitters. 3) By relaxing the constraints of finite mean and variance of the connection model, linear throughput scaling Θ(n)\Theta (n) is achievable with Pareto-type fading models.Comment: 13 pages, 4 figures, To appear in IEEE Transactions on Information Theor
    • …
    corecore