4,840 research outputs found

    On the Use of Non-Stationary Policies for Stationary Infinite-Horizon Markov Decision Processes

    Get PDF
    We consider infinite-horizon stationary γ\gamma-discounted Markov Decision Processes, for which it is known that there exists a stationary optimal policy. Using Value and Policy Iteration with some error ϵ\epsilon at each iteration, it is well-known that one can compute stationary policies that are 2γ(1−γ)2ϵ\frac{2\gamma}{(1-\gamma)^2}\epsilon-optimal. After arguing that this guarantee is tight, we develop variations of Value and Policy Iteration for computing non-stationary policies that can be up to 2γ1−γϵ\frac{2\gamma}{1-\gamma}\epsilon-optimal, which constitutes a significant improvement in the usual situation when γ\gamma is close to 1. Surprisingly, this shows that the problem of "computing near-optimal non-stationary policies" is much simpler than that of "computing near-optimal stationary policies"

    Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

    Get PDF
    Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞L_\infty norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an LqL_q norm with q<∞q<\infty which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis.Comment: 24 page

    From Infinite to Finite Programs: Explicit Error Bounds with Applications to Approximate Dynamic Programming

    Full text link
    We consider linear programming (LP) problems in infinite dimensional spaces that are in general computationally intractable. Under suitable assumptions, we develop an approximation bridge from the infinite-dimensional LP to tractable finite convex programs in which the performance of the approximation is quantified explicitly. To this end, we adopt the recent developments in two areas of randomized optimization and first order methods, leading to a priori as well as a posterior performance guarantees. We illustrate the generality and implications of our theoretical results in the special case of the long-run average cost and discounted cost optimal control problems for Markov decision processes on Borel spaces. The applicability of the theoretical results is demonstrated through a constrained linear quadratic optimal control problem and a fisheries management problem.Comment: 30 pages, 5 figure
    • …
    corecore