14,963 research outputs found

    Distortion Analysis for the Assessment of LTI and non-LTI Transmitters

    Full text link
    Bounds on the frequency domain behavior of electrically small antennas are adapted to assess the time domain distortion or fidelity achievable by simple linear time-invariant (LTI) systems. Rigorous expressions for a TM01_{01} spherical shell are used as a direct analog to the well known Chu limit on an antenna's bandwidth-efficiency product. These expressions are shown to agree with results obtained using narrowband single resonance approximations, allowing for the analysis of arbitrary small dipole-like structures through bounds on their single frequency Q-factor and efficiency. The resulting expressions are used as a basis for assessing the performance gains of electrically small non-LTI (e.g., direct antenna modulation) transmitters for which Q-factor and impedance bandwidth are not defined but which can be analyzed directly in the time domain via distortion.Comment: 8 pages, 8 figure

    Delay Performance of MISO Wireless Communications

    Full text link
    Ultra-reliable, low latency communications (URLLC) are currently attracting significant attention due to the emergence of mission-critical applications and device-centric communication. URLLC will entail a fundamental paradigm shift from throughput-oriented system design towards holistic designs for guaranteed and reliable end-to-end latency. A deep understanding of the delay performance of wireless networks is essential for efficient URLLC systems. In this paper, we investigate the network layer performance of multiple-input, single-output (MISO) systems under statistical delay constraints. We provide closed-form expressions for MISO diversity-oriented service process and derive probabilistic delay bounds using tools from stochastic network calculus. In particular, we analyze transmit beamforming with perfect and imperfect channel knowledge and compare it with orthogonal space-time codes and antenna selection. The effect of transmit power, number of antennas, and finite blocklength channel coding on the delay distribution is also investigated. Our higher layer performance results reveal key insights of MISO channels and provide useful guidelines for the design of ultra-reliable communication systems that can guarantee the stringent URLLC latency requirements.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    On Detection Issues in the SC-based Uplink of a MU-MIMO System with a Large Number of BS Antennas

    Full text link
    This paper deals with SC/FDE within a MU-MIMO system where a large number of BS antennas is adopted. In this context, either linear or reduced-complexity iterative DF detection techniques are considered. Regarding performance evaluation by simulation, appropriate semi-analytical methods are proposed. This paper includes a detailed evaluation of BER performances for uncoded 4-Quadrature Amplitude Modulation (4-QAM) schemes and a MU-MIMO channel with uncorrelated Rayleigh fading. The accuracy of performance results obtained through the semi-analytical simulation methods is assessed by means of parallel conventional Monte Carlo simulations, under the assumptions of perfect power control and perfect channel estimation. The performance results are discussed in detail, with the help of selected performance bounds. We emphasize that a moderately large number of BS antennas is enough to closely approximate the SIMO MFB performance, especially when using the suggested low-complexity iterative DF technique, which does not require matrix inversion operations. We also emphasize the achievable "massive MIMO" effects, even for strongly reduced-complexity linear detection techniques, provided that the number of BS antennas is much higher than the number of antennas which are jointly employed in the terminals of the multiple autonomous users.Comment: 7 pages, 4 figure
    • …
    corecore