10 research outputs found

    Branching processes, the max-plus algebra and network calculus

    Get PDF
    Branching processes can describe the dynamics of various queueing systems, peer-to-peer systems, delay tolerant networks, etc. In this paper we study the basic stochastic recursion of multitype branching processes, but in two non-standard contexts. First, we consider this recursion in the max-plus algebra where branching corresponds to finding the maximal offspring of the current generation. Secondly, we consider network-calculus-type deterministic bounds as introduced by Cruz, which we extend to handle branching-type processes. The paper provides both qualitative and quantitative results and introduces various applications of (max-plus) branching processes in queueing theory

    The achievable region method in the optimal control of queueing systems : formulations, bounds and policies

    Get PDF
    Cover title.Includes bibliographical references (p. 44-48).Supported in part by a Presidential Young Investigator Award, with matching funds from Draper Laboratory. DDM-9158118Dimitris Bertsimas

    The achievable region method in the optimal control of queueing systems : formulations, bounds and policies

    Get PDF
    Cover title.Includes bibliographical references (p. 44-48).Supported in part by a Presidential Young Investigator Award, with matching funds from Draper Laboratory. DDM-9158118Dimitris Bertsimas

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin

    Job shop scheduling with artificial immune systems

    Get PDF
    The job shop scheduling is complex due to the dynamic environment. When the information of the jobs and machines are pre-defined and no unexpected events occur, the job shop is static. However, the real scheduling environment is always dynamic due to the constantly changing information and different uncertainties. This study discusses this complex job shop scheduling environment, and applies the AIS theory and switching strategy that changes the sequencing approach to the dispatching approach by taking into account the system status to solve this problem. AIS is a biological inspired computational paradigm that simulates the mechanisms of the biological immune system. Therefore, AIS presents appealing features of immune system that make AIS unique from other evolutionary intelligent algorithm, such as self-learning, long-lasting memory, cross reactive response, discrimination of self from non-self, fault tolerance, and strong adaptability to the environment. These features of AIS are successfully used in this study to solve the job shop scheduling problem. When the job shop environment is static, sequencing approach based on the clonal selection theory and immune network theory of AIS is applied. This approach achieves great performance, especially for small size problems in terms of computation time. The feature of long-lasting memory is demonstrated to be able to accelerate the convergence rate of the algorithm and reduce the computation time. When some unexpected events occasionally arrive at the job shop and disrupt the static environment, an extended deterministic dendritic cell algorithm (DCA) based on the DCA theory of AIS is proposed to arrange the rescheduling process to balance the efficiency and stability of the system. When the disturbances continuously occur, such as the continuous jobs arrival, the sequencing approach is changed to the dispatching approach that involves the priority dispatching rules (PDRs). The immune network theory of AIS is applied to propose an idiotypic network model of PDRs to arrange the application of various dispatching rules. The experiments show that the proposed network model presents strong adaptability to the dynamic job shop scheduling environment.postprin

    From Sleeping to Stockpiling: Energy Conservation via Stochastic Scheduling in Wireless Networks.

    Full text link
    Motivated by the need to conserve energy in wireless networks, we study three stochastic dynamic scheduling problems. In the first problem, we consider a wireless sensor node that can turn its radio off for fixed durations of time in order to conserve energy. We formulate finite horizon expected cost and infinite horizon average expected cost problems to model the fundamental tradeoff between packet delay and energy consumption. Through analysis of the dynamic programming equations, we derive structural results on the optimal policies for both formulations. For the infinite horizon problem, we identify a threshold decision rule to determine the optimal control action when the queue is empty. In the second problem, we consider a sensor node with an inaccurate timer in the ultra-low power sleep mode. The loss in timing accuracy in the sleep mode can result in unnecessary energy consumption from two unsynchronized devices trying to communicate. We develop a novel method for the node to calibrate its timer: occasionally waking up to measure the ambient temperature, upon which the timer speed depends. The objective is to dynamically schedule a limited number of temperature measurements in a manner most useful to improving the accuracy of the timer. We formulate optimization problems with both continuous and discrete underlying time scales, and implement a numerical solution to an equivalent reduction of the second formulation. In the third problem, we consider a single source transmitting data to one or more receivers over a shared wireless channel. Each receiver has a buffer to store received packets before they are drained. The transmitter's goal is to minimize total power consumption by exploiting the temporal and spatial variation of the channel, while preventing the receivers' buffers from emptying. In the case of a single receiver, we show that modified base-stock and finite generalized base-stock policies are optimal when the power-rate curves are linear and piecewise-linear convex, respectively. We also present the sequences of critical numbers that complete the characterizations of the optimal policies when additional technical conditions are satisfied. We then analyze the structure of the optimal policy for the case of two receivers.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/77839/1/dishuman_1.pd
    corecore