100 research outputs found

    Analysis, characterization and optimization of the energy efficiency on softwarized mobile platforms

    Get PDF
    Mención Internacional en el título de doctorLa inminente 5ª generación de sistemas móviles (5G) está a punto de revolucionar la industria, trayendo una nueva arquitectura orientada a los nuevos mercados verticales y servicios. Debido a esto, el 5G Infrastructure Public Private Partnership (5G-PPP) ha especificado una lista de Indicadores de Rendimiento Clave (KPI) que todo sistema 5G tiene que soportar, por ejemplo incrementar por 1000 el volumen de datos, de 10 a 100 veces m´as dispositivos conectados o consumos energéticos 10 veces inferiores. Con el fin de conseguir estos requisitos, se espera expandir los despligues actuales usando mas Puntos de Acceso (PoA) incrementando así su densidad con múltiples tecnologías inalámbricas. Esta estrategia de despliegue masivo tiene una contrapartida en la eficiencia energética, generando un conflicto con el KPI de reducir por 10 el consumo energético. En este contexto, la comunidad investigadora ha propuesto nuevos paradigmas para alcanzar los requisitos impuestos para los sistemas 5G, siendo materializados en tecnologías como Redes Definidas por Software (SDN) y Virtualización de Funciones de Red (NFV). Estos nuevos paradigmas son el primer paso hacia la softwarización de los despliegues móviles, incorporando nuevos grados de flexibilidad y reconfigurabilidad de la Red de Acceso Radio (RAN). En esta tesis, presentamos primero un análisis detallado y caracterización de las redes móviles softwarizadas. Consideramos el software como la base de la nueva generación de redes celulares y, por lo tanto, analizaremos y caracterizaremos el impacto en la eficiencia energética de estos sistemas. La primera meta de este trabajo es caracterizar las plataformas software disponibles para Radios Definidas por Software (SDR), centrándonos en las dos soluciones principales de código abierto: OpenAirInterface (OAI) y srsLTE. Como resultado, proveemos una metodología para analizar y caracterizar el rendimiento de estas soluciones en función del uso de la CPU, rendimiento de red, compatibilidad y extensibilidad de dicho software. Una vez hemos entendido qué rendimiento podemos esperar de este tipo de soluciones, estudiamos un prototipo SDR construido con aceleración hardware, que emplea una plataformas basada en FPGA. Este prototipo está diseñado para incluir capacidad de ser consciente de la energía, permiento al sistema ser reconfigurado para minimizar la huella energética cuando sea posible. Con el fin de validar el diseño de nuestro sistema, más tarde presentamos una plataforma para caracterizar la energía que será empleada para medir experimentalmente el consumo energético de dispositivos reales. En nuestro enfoque, realizamos dos tipos de análisis: a pequeña escala de tiempo y a gran escala de tiempo. Por lo tanto, para validar nuestro entorno de medidas, caracterizamos a través de análisis numérico los algoritmos para la Adaptación de la Tasa (RA) en IEEE 802.11, para entonces comparar nuestros resultados teóricos con los experimentales. A continuación extendemos nuestro análisis a la plataforma SDR acelerada por hardware previamente mencionada. Nuestros resultados experimentales muestran que nuestra sistema puede en efecto reducir la huella energética reconfigurando el despligue del sistema. Entonces, la escala de tiempos es elevada y presentamos los esquemas para Recursos bajo Demanda (RoD) en despliegues de red ultra-densos. Esta estrategia está basada en apagar/encender dinámicamente los elementos que forman la red con el fin de reducir el total del consumo energético. Por lo tanto, presentamos un modelo analítico en dos sabores, un modelo exacto que predice el comportamiento del sistema con precisión pero con un alto coste computacional y uno simplificado que es más ligero en complejidad mientras que mantiene la precisión. Nuestros resultados muestran que estos esquemas pueden efectivamente mejorar la eficiencia energética de los despliegues y mantener la Calidad de Servicio (QoS). Con el fin de probar la plausibilidad de los esquemas RoD, presentamos un plataforma softwarizada que sigue el paradigma SDN, OFTEN (OpenFlow framework for Traffic Engineering in mobile Network with energy awareness). Nuestro diseño está basado en OpenFlow con funcionalidades para hacerlo consciente de la energía. Finalmente, un prototipo real con esta plataforma es presentando, probando así la plausibilidad de los RoD en despligues reales.The upcoming 5th Generation of mobile systems (5G) is about to revolutionize the industry, bringing a new architecture oriented to new vertical markets and services. Due to this, the 5G-PPP has specified a list of Key Performance Indicator (KPI) that 5G systems need to support e.g. increasing the 1000 times higher data volume, 10 to 100 times more connected devices or 10 times lower power consumption. In order to achieve these requirements, it is expected to expand the current deployments using more Points of Attachment (PoA) by increasing their density and by using multiple wireless technologies. This massive deployment strategy triggers a side effect in the energy efficiency though, generating a conflict with the “10 times lower power consumption” KPI. In this context, the research community has proposed novel paradigms to achieve the imposed requirements for 5G systems, being materialized in technologies such as Software Defined Networking (SDN) and Network Function Virtualization (NFV). These new paradigms are the first step to softwarize the mobile network deployments, enabling new degrees of flexibility and reconfigurability of the Radio Access Network (RAN). In this thesis, we first present a detailed analysis and characterization of softwarized mobile networking. We consider software as a basis for the next generation of cellular networks and hence, we analyze and characterize the impact on the energy efficiency of these systems. The first goal of this work is to characterize the available software platforms for Software Defined Radio (SDR), focusing on the two main open source solutions: OAI and srsLTE. As result, we provide a methodology to analyze and characterize the performance of these solutions in terms of CPU usage, network performance, compatibility and extensibility of the software. Once we have understood the expected performance for such platformsc, we study an SDR prototype built with hardware acceleration, that employs a FPGA based platform. This prototype is designed to include energy-awareness capabilites, allowing the system to be reconfigured to minimize the energy footprint when possible. In order to validate our system design, we later present an energy characterization platform that we will employ to experimentally measure the energy consumption of real devices. In our approach, we perform two kind of analysis: at short time scale and large time scale. Thus, to validate our approach in short time scale and the energy framework, we have characterized though numerical analysis the Rate Adaptation (RA) algorithms in IEEE 802.11, and then compare our theoretical results to the obtained ones through experimentation. Next we extend our analysis to the hardware accelerated SDR prototype previously mentioned. Our experimental results show that our system can indeed reduce the energy footprint reconfiguring the system deployment. Then, the time scale of our analysis is elevated and we present Resource-on-Demand (RoD) schemes for ultradense network deployments. This strategy is based on dynamically switch on/off the elements that form the network to reduce the overall energy consumption. Hence, we present a analytic model in two flavors, an exact model that accurately predicts the system behaviour but high computational cost and a simplified one that is lighter in complexity while keeping the accuracy. Our results show that these schemes can effectively enhance the energy efficiency of the deployments and mantaining the Quality of Service (QoS). In order to prove the feasibility of RoD, we present a softwarized platform that follows the SDN paradigm, the OFTEN (Open Flow framework for Traffic Engineering in mobile Networks with energy awareness) framework. Our design is based on OpenFlow with energy-awareness functionalities. Finally, a real prototype of this framework is presented, proving the feasibility of the RoD in real deployments.FP7-CROWD (2013-2015) CROWD (Connectivity management for eneRgy Optimised Wireless Dense networks).-- H2020-Flex5GWare (2015-2017) Flex5GWare (Flexible and efficient hardware/software platforms for 5G network elements and devices).Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Gramaglia , Marco.- Secretario: José Nuñez.- Vocal: Fabrizio Giulian

    Experimental verification of multi-antenna techniques for aerial and ground vehicles’ communication

    Get PDF

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Integrated Satellite-terrestrial networks for IoT: LoRaWAN as a Flying Gateway

    Get PDF
    When the Internet of Things (IoT) was introduced, it causes an immense change in human life. Recently, different IoT emerging use cases, which will involve an even higher number of connected devices aimed at collecting and sending data with different purposes and over different application scenarios, such as smart city, smart factory, and smart agriculture. In some cases, the terrestrial infrastructure is not enough to guarantee the typical performance indicators due to its design and intrinsic limitations. Coverage is an example, where the terrestrial infrastructure is not able to cover certain areas such as remote and rural areas. Flying technologies, such as communication satellites and Unmanned Aerial Vehicles (UAVs), can contribute to overcome the limitations of the terrestrial infrastructure, offering wider coverage, higher resilience and availability, and improving user\u2019s Quality of Experience (QoE). IoT can benefit from the UAVs and satellite integration in many ways, also beyond the coverage extension and the increase of the available bandwidth that these objects can offer. This thesis proposes the integration of both IoT and UAVs to guarantee the increased coverage in hard to reach and out of coverage areas. Its core focus addresses the development of the IoT flying gateway and data mule and testing both approaches to show their feasibility. The first approach for the integration of IoT and UAV results in the implementing of LoRa flying gateway with the aim of increasing the IoT communication protocols\u2019 coverage area to reach remote and rural areas. This flying gateway examines the feasibility for extending the coverage in a remote area and transmitting the data to the IoT cloud in real-time. Moreover, it considers the presence of a satellite between the gateway and the final destination for areas with no Internet connectivity and communication means such as WiFi, Ethernet, 4G, or LTE. The experimental results have shown that deploying a LoRa gateway on board a flying drone is an ideal option for the extension of the IoT network coverage in rural and remote areas. The second approach for the integration of the aforementioned technologies is the deployment of IoT data mule concept for LoRa networks. The difference here is the storage of the data on board of the gateway and not transmitting the data to the IoT cloud in real time. The aim of this approach is to receive the data from the LoRa sensors installed in a remote area, store them in the gateway up until this flying gateway is connected to the Internet. The experimental results have shown the feasibility of our flying data mule in terms of signal quality, data delivery, power consumption and gateway status. The third approach considers the security aspect in LoRa networks. The possible physical attacks that can be performed on any LoRa device can be performed once its location is revealed. Position estimation was carried out using one of the LoRa signal features: RSSI. The values of RSSI are fed to the Trilateration localization algorithm to estimate the device\u2019s position. Different outdoor tests were done with and without the drone, and the results have shown that RSSI is a low cost option for position estimation that can result in a slight error due to different environmental conditions that affect the signal quality. In conclusion, by adopting both IoT technology and UAV, this thesis advances the development of flying LoRa gateway and LoRa data mule for the aim of increasing the coverage of LoRa networks to reach rural and remote areas. Moreover, this research could be considered as the first step towards the development of high quality and performance LoRa flying gateway to be tested and used in massive LoRa IoT networks in rural and remote areas

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Coexistence and interference mitigation for WPANs and WLANs from traditional approaches to deep learning: a review

    Get PDF
    More and more devices, such as Bluetooth and IEEE 802.15.4 devices forming Wireless Personal Area Networks (WPANs) and IEEE 802.11 devices constituting Wireless Local Area Networks (WLANs), share the 2.4 GHz Industrial, Scientific and Medical (ISM) band in the realm of the Internet of Things (IoT) and Smart Cities. However, the coexistence of these devices could pose a real challenge—co-channel interference that would severely compromise network performances. Although the coexistence issues has been partially discussed elsewhere in some articles, there is no single review that fully summarises and compares recent research outcomes and challenges of IEEE 802.15.4 networks, Bluetooth and WLANs together. In this work, we revisit and provide a comprehensive review on the coexistence and interference mitigation for those three types of networks. We summarize the strengths and weaknesses of the current methodologies, analysis and simulation models in terms of numerous important metrics such as the packet reception ratio, latency, scalability and energy efficiency. We discover that although Bluetooth and IEEE 802.15.4 networks are both WPANs, they show quite different performances in the presence of WLANs. IEEE 802.15.4 networks are adversely impacted by WLANs, whereas WLANs are interfered by Bluetooth. When IEEE 802.15.4 networks and Bluetooth co-locate, they are unlikely to harm each other. Finally, we also discuss the future research trends and challenges especially Deep-Learning and Reinforcement-Learning-based approaches to detecting and mitigating the co-channel interference caused by WPANs and WLANs
    corecore