117 research outputs found

    CSMA/RN: A universal protocol for gigabit networks

    Get PDF
    Networks must provide intelligent access for nodes to share the communications resources. In the range of 100 Mbps to 1 Gbps, the demand access class of protocols were studied extensively. Many use some form of slot or reservation system and many the concept of attempt and defer to determine the presence or absence of incoming information. The random access class of protocols like shared channel systems (Ethernet), also use the concept of attempt and defer in the form of carrier sensing to alleviate the damaging effects of collisions. In CSMA/CD, the sensing of interference is on a global basis. All systems discussed above have one aspect in common, they examine activity on the network either locally or globally and react in an attempt and whatever mechanism. Of the attempt + mechanisms discussed, one is obviously missing; that is attempt and truncate. Attempt and truncate was studied in a ring configuration called the Carrier Sensed Multiple Access Ring Network (CSMA/RN). The system features of CSMA/RN are described including a discussion of the node operations for inserting and removing messages and for handling integrated traffic. The performance and operational features based on analytical and simulation studies which indicate that CSMA/RN is a useful and adaptable protocol over a wide range of network conditions are discussed. Finally, the research and development activities necessary to demonstrate and realize the potential of CSMA/RN as a universal, gigabit network protocol is outlined

    Performance analysis of ATM/DQDB interworking

    Get PDF

    Extremely high data-rate, reliable network systems research

    Get PDF
    Significant progress was made over the year in the four focus areas of this research group: gigabit protocols, extensions of metropolitan protocols, parallel protocols, and distributed simulations. Two activities, a network management tool and the Carrier Sensed Multiple Access Collision Detection (CSMA/CD) protocol, have developed to the point that a patent is being applied for in the next year; a tool set for distributed simulation using the language SIMSCRIPT also has commercial potential and is to be further refined. The year's results for each of these areas are summarized and next year's activities are described

    A Fairness Algorithm for High-speed Networks based on a Resilient Packet Ring Architecture

    Get PDF
    IEEE is currently standardizing a spatial reuse ring topology network called the Resilient Packet Ring (RPR, IEEE P802.17). The goal of the RPR development is to make a LAN/MAN standard, but also WANs are discussed. A ring network needs a fairness algorithm that regulates each stations access to the ring. The RPR fairness algorithm is currently being developed with mostly long distances between stations in mind. In this paper we discuss the feedback aspects of this algorithm and how it needs to be changed in order to give good performance if and when RPR is used for high-speed networks and LANs with shorter distances between stations. We discuss different architectural parameters including buffers sizes and distances between stations. We suggest the use of triggers instead of timers to meet the response requirements of high-speed networks. We have developed a discrete event simulator in the programming language Java. The proposed improvements are compared and evaluated using a ring network model that we have built using our simulator. (c) 2002 IEEE. Personal use of this material is permitted

    Design Related Investigations for Media Access Control Protocol Service Schemes in Wavelength Division Multiplexed All Optical Networks

    Get PDF
    All-optical networks (AON) are emerging through the technological advancement of various optical components, and promise to provide almost unlimited bandwidth. To realise true network utilisation, software solutions are required. An active area of research is media access control (MAC) protocol. This protocol should address the multiple channels by wavelength division mutiplexing (WDM) and bandwidth management. Token-passing (TP) is one such protocol, and is adopted due to its simplicity and collisionless nature. Previously, this protocol has been analysed for a single traffic type. However, such a study may not substantiate the protocol's acceptance in the AON design. As multiple traffic types hog the network through the introduction multimedia services and Internet, the MAC protocol should support this traffic. Four different priority schemes are proposed for TP protocol extension, and classified as static and dynamic schemes. Priority assignments are a priori in static scheme, whereas in the other scheme, priority reassignments are carried out dynamically. Three different versions of dynamic schemes are proposed. The schemes are investigated for performance through analytical modelling and simulations. The semi-Markov process (SMP) modelling approach is extended for the analyses of these cases. In this technique, the behaviour of a typical access node needs to be considered. The analytical results are compared with the simulation results. The deviations of the results are within the acceptable limits, indicating the applicability ofthe model in all-optical environment. It is seen that the static scheme offers higher priority traffic better delay and packet loss performance. Thus, this scheme can be used beneficially in hard real-time systems, where knowledge of priority is a priori. The dynamic priority scheme-l is more suitable for the environments where the lower priority traffic is near real-time traffic and loss sensitive too. For such a scheme, a larger buffer with smaller threshold limits resulted in improved performance. The dynamic scheme-2 and 3 can be employed to offer equal treatment for the different traffic types, and more beneficial in future AONs. These schemes are also compared in their performance to offer constant QoS level. New parameters to facilitate the comparison are proposed. It is observed that the dynamic scheme-l outperforms the other schemes, and these QoS parameters can be used for such QoS analysis. It is concluded that the research can benefit the design of the protocol and its service schemes needed in AON system and its applications

    Interactive DICOM image transmission and telediagnosis over the European ATM network

    Get PDF

    Performance Improvements for FDDI and CSMA/CD Protocols

    Get PDF
    The High-Performance Computing Initiative from the White House Office of Science and Technology Policy has defined 20 major challenges in science and engineering which are dependent on the solutions to a number of high-performance computing problems. One of the major areas of focus of this initiative is the development of gigabit rate networks to be used in environments such as the space station or a National Research and Educational Network (NREN). The strategy here is to use existing network designs as building blocks for achieving higher rates, with the ultimate goal being a gigabit rate network. Two strategies which contribute to achieving this goal are examined in detail.1 FDDI2 is a token ring network based on fiber optics capable of a 100 Mbps rate. Both media access (MAC) and physical layer modifications are considered. A method is presented which allows one to determine maximum utilization based on the token-holding timer settings. Simulation results show that employing the second counter-rotating ring in combination with destination removal has a multiplicative effect greater than the effect which either of the factors have individually on performance. Two 100 Mbps rings can handle loads in the range of 400 to 500 Mbps for traffic with a uniform distribution and fixed packet size. Performance is dependent on the number of nodes, improving as the number increases. A wide range of environments are examined to illustrate robustness, and a method of implementation is discussed
    corecore