2,755 research outputs found

    On gait as a biometric: progress and prospects

    No full text
    There is increasing interest in automatic recognition by gait given its unique capability to recognize people at a distance when other biometrics are obscured. Application domains are those of any noninvasive biometric, but with particular advantage in surveillance scenarios. Its recognition capability is supported by studies in other domains such as medicine (biomechanics), mathematics and psychology which also suggest that gait is unique. Further, examples of recognition by gait can be found in literature, with early reference by Shakespeare concerning recognition by the way people walk. Many of the current approaches confirm the early results that suggested gait could be used for identification, and now on much larger databases. This has been especially influenced by DARPA’s Human ID at a Distance research program with its wide scenario of data and approaches. Gait has benefited from the developments in other biometrics and has led to new insight particularly in view of covariates. Equally, gait-recognition approaches concern extraction and description of moving articulated shapes and this has wider implications than just in biometrics

    Human Perambulation as a Self Calibrating Biometric

    No full text
    This paper introduces a novel method of single camera gait reconstruction which is independent of the walking direction and of the camera parameters. Recognizing people by gait has unique advantages with respect to other biometric techniques: the identification of the walking subject is completely unobtrusive and the identification can be achieved at distance. Recently much research has been conducted into the recognition of frontoparallel gait. The proposed method relies on the very nature of walking to achieve the independence from walking direction. Three major assumptions have been done: human gait is cyclic; the distances between the bone joints are invariant during the execution of the movement; and the articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The method has been tested on several subjects walking freely along six different directions in a small enclosed area. The results show that recognition can be achieved without calibration and without dependence on view direction. The obtained results are particularly encouraging for future system development and for its application in real surveillance scenarios

    On using gait to enhance frontal face extraction

    No full text
    Visual surveillance finds increasing deployment formonitoring urban environments. Operators need to be able to determine identity from surveillance images and often use face recognition for this purpose. In surveillance environments, it is necessary to handle pose variation of the human head, low frame rate, and low resolution input images. We describe the first use of gait to enable face acquisition and recognition, by analysis of 3-D head motion and gait trajectory, with super-resolution analysis. We use region- and distance-based refinement of head pose estimation. We develop a direct mapping to relate the 2-D image with a 3-D model. In gait trajectory analysis, we model the looming effect so as to obtain the correct face region. Based on head position and the gait trajectory, we can reconstruct high-quality frontal face images which are demonstrated to be suitable for face recognition. The contributions of this research include the construction of a 3-D model for pose estimation from planar imagery and the first use of gait information to enhance the face extraction process allowing for deployment in surveillance scenario

    Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras

    No full text
    Despite the fact that personal privacy has become a major concern, surveillance technology is now becoming ubiquitous in modern society. This is mainly due to the increasing number of crimes as well as the essential necessity to provide secure and safer environment. Recent research studies have confirmed now the possibility of recognizing people by the way they walk i.e. gait. The aim of this research study is to investigate the use of gait for people detection as well as identification across different cameras. We present a new approach for people tracking and identification between different non-intersecting un-calibrated stationary cameras based on gait analysis. A vision-based markerless extraction method is being deployed for the derivation of gait kinematics as well as anthropometric measurements in order to produce a gait signature. The novelty of our approach is motivated by the recent research in biometrics and forensic analysis using gait. The experimental results affirmed the robustness of our approach to successfully detect walking people as well as its potency to extract gait features for different camera viewpoints achieving an identity recognition rate of 73.6 % processed for 2270 video sequences. Furthermore, experimental results confirmed the potential of the proposed method for identity tracking in real surveillance systems to recognize walking individuals across different views with an average recognition rate of 92.5 % for cross-camera matching for two different non-overlapping views.<br/

    Zernike velocity moments for sequence-based description of moving features

    No full text
    The increasing interest in processing sequences of images motivates development of techniques for sequence-based object analysis and description. Accordingly, new velocity moments have been developed to allow a statistical description of both shape and associated motion through an image sequence. Through a generic framework motion information is determined using the established centralised moments, enabling statistical moments to be applied to motion based time series analysis. The translation invariant Cartesian velocity moments suffer from highly correlated descriptions due to their non-orthogonality. The new Zernike velocity moments overcome this by using orthogonal spatial descriptions through the proven orthogonal Zernike basis. Further, they are translation and scale invariant. To illustrate their benefits and application the Zernike velocity moments have been applied to gait recognition—an emergent biometric. Good recognition results have been achieved on multiple datasets using relatively few spatial and/or motion features and basic feature selection and classification techniques. The prime aim of this new technique is to allow the generation of statistical features which encode shape and motion information, with generic application capability. Applied performance analyses illustrate the properties of the Zernike velocity moments which exploit temporal correlation to improve a shape's description. It is demonstrated how the temporal correlation improves the performance of the descriptor under more generalised application scenarios, including reduced resolution imagery and occlusion

    On Using Gait Biometrics to Enhance Face Pose Estimation

    No full text
    Many face biometrics systems use controlled environments where subjects are viewed directly facing the camera. This is less likely to occur in surveillance environments, so a process is required to handle the pose variation of the human head, change in illumination, and low frame rate of input image sequences. This has been achieved using scale invariant features and 3D models to determine the pose of the human subject. Then, a gait trajectory model is generated to obtain the correct the face region whilst handing the looming effect. In this way, we describe a new approach aimed to estimate accurate face pose. The contributions of this research include the construction of a 3D model for pose estimation from planar imagery and the first use of gait information to enhance the face pose estimation process

    Markerless View Independent Gait Analysis with Self-camera Calibration

    No full text
    We present a new method for viewpoint independent markerless gait analysis. The system uses a single camera, does not require camera calibration and works with a wide range of directions of walking. These properties make the proposed method particularly suitable for identification by gait, where the advantages of completely unobtrusiveness, remoteness and covertness of the biometric system preclude the availability of camera information and use of marker based technology. Tests on more than 200 video sequences with subjects walking freely along different walking directions have been performed. The obtained results show that markerless gait analysis can be achieved without any knowledge of internal or external camera parameters and that the obtained data that can be used for gait biometrics purposes. The performance of the proposed method is particularly encouraging for its appliance in surveillance scenarios
    corecore