76 research outputs found

    ASEP of MIMO System with MMSE-OSIC Detection over Weibull-Gamma Fading Channel Subject to AWGGN

    Get PDF

    Reduced-Complexity Transmit/Receive-Diversity Systems

    Get PDF
    We consider wireless systems with transmit and receive diversity. For reduction of complexity, we propose to use hybrid selection/maximal ratio transmission at one link end, choosing L out of N antennas. We analyze the performance of such systems, giving analytical bounds and comparing them to computer simulations. Outage probability, symbol error probability, and capacity are shown. We demonstrate that in typical cases, a small number of used antennas L is sufficient to achieve considerable performance gains. We also analyze the infuence of the number of base station antennas, of fading correlation and channel estimation errors. The simulation results confirm that the proposed scheme is effective in a variety of environments

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Multiple-Input Multiple-Output Communications Systems Using Reconfigurable Antennas

    Get PDF
    RÉSUMÉ Depuis les années 1990, l'utilisation des systèmes de communications sans-fil à entrées multiples-sorties multiples (MIMO) a été introduit pour fournir des transmissions fiables à grande vitesse. Cette thèse porte sur l'application et l’étude des systèmes MIMO avec des antennes reconfigurables, qui sont ajustable électroniquement pour produire différents diagrammes de rayonnement d'un seul élément d'antenne et ainsi offrir une diversité de diagrammes de rayonnement. En particulier, nous étudions le comportement de la capacité de canal des systèmes MIMO à sélection de diagrammes de rayonnement (PS-MIMO), et nous proposons aussi des algorithmes de sélection du diagramme de rayonnement atteignant la capacité maximale. Tout d'abord, nous étudions l'application des antennes reconfigurables dans l'estimation des statistiques spatiales à long terme de canaux spatiaux avec grappes de multi-trajets (cluster). Nous proposons un estimateur de spectre de type Capon et une technique d'adaptation de la covariance (COMET) pour estimer conjointement l'angle moyen et l’étalement angulaire de la grappe spatiale avec des antennes reconfigurables. En second lieu, sur la base des statistiques à long terme du canal MIMO, nous proposons des algorithmes de sélection de diagramme de rayonnement MIMO (SPS-MIMO) pour atteindre la capacité maximale de canal ergodique. L'analyse de la maximisation de la capacité ergodique du système SPS-MIMO indique que le modèle statistique de sélection fournit des gains supplémentaires en améliorant la puissance du signal reçu et en décorrélant les signaux reçus avec différents diagrammes de rayonnement directionnels. Troisièmement, nous nous concentrons sur le modèle de sélection instantanée des diagrammes de rayonnement MIMO (IPS-MIMO) basé sur des informations instantanées d'état de canal (CSI) afin de maximiser la capacité instantanée pour chaque réalisation de canal. Nous démontrons que l’ordre de diversité des systèmes MIMO peut être multipliée par le nombre de diagrammes de rayonnement avec sélection de diagramme instantanée. Afin d'évaluer la capacité moyenne de l'IPS-MIMO, nous proposons un nouvel algorithme qui permet d’approximer étroitement la moyenne de la valeur maximale de la capacité du canal MIMO avec des trajets arbitrairement corrélés. Nous proposons également un algorithme pour sélectionner instantanément les diagrammes de rayonnement pour atteindre la capacité moyenne. En outre, sur la base d'une simple expression en forme fermée de la capacité coefficient de corrélation, nous sommes en mesure de proposer un algorithme de sélection de sous-ensemble de diagrammes qui offre un compromis entre performances et la complexité de l’algorithme de sélection. En conclusion, des gains de performance importants peuvent être obtenus grâce à la combinaison de l'utilisation d’antennes reconfigurables et de systèmes MIMO avec soit des algorithmes de sélection de diagramme de rayonnement statistique ou instantanée. La capacité des systèmes PS-MIMO à améliorer les performances du système, y compris la capacité et de l'ordre de la diversité, est démontrée par l'analyse théorique et des simulations numériques.----------ABSTRACT Since the 1990s, the use of multiple-input multiple-output (MIMO) systems has been introduced to modern wireless communications to provide reliable transmission at high data rates. This thesis focuses on the application of MIMO systems with reconfigurable antennas, which are electronically tunable to produce a number of radiation patterns at a single antenna element and provide pattern diversity. In particular, we investigate the capacity performance of the pattern selection MIMO (PS-MIMO) systems, and we also present maximum capacity achieving algorithms for radiation pattern selection. First, we investigate the application of reconfigurable antennas in estimating long term spatial statistics of spatial clustered channels. We propose a Capon-like spectrum estimator and a covariance matching technique (COMET) to jointly estimate the mean angle and the angular spread of the spatial cluster with reconfigurable antennas. Second, based on the long term statistics of the MIMO channel, we propose statistical pattern selection MIMO (SPS-MIMO) algorithms to achieve maximum ergodic channel capacity. Analysis of the ergodic capacity maximization of the SPS-MIMO indicates that the statistical pattern selection provides additional gains by enhancing received signal power and decorrelating received signals with different directional radiation patterns. Third, we focus on the instantaneous pattern selection MIMO (IPS-MIMO) based on instantaneous channel state information (CSI) in order to maximize the instantaneous capacity for every channel realization. We prove that the diversity order of MIMO systems can be multiplied by the number of radiation patterns with instantaneous pattern selection. In order to evaluate the mean capacity of the IPS-MIMO, we propose a novel algorithm which closely approximates the mean of the maximum of the channel capacity of arbitrarily correlated MIMO channels. We also propose an algorithm for instantaneously selecting radiation patterns to achieve the mean capacity. In addition, based on a simple closed-form approximation to the capacity correlation coefficient, we are able to propose a subset pattern selection algorithm which enables the trade-off between performances and complexity. In conclusion, important extra gains can be obtained as a result of combining the use of reconfigurable antennas and MIMO systems with either statistical or instantaneous radiation pattern selection. The capability of the PS-MIMO to improve system performances, including capacity and diversity order, is demonstrated through theoretical analysis and numerical simulations

    Characterisation and Modelling of Indoor and Short-Range MIMO Communications

    Get PDF
    Over the last decade, we have witnessed the rapid evolution of Multiple-Input Multiple-Output (MIMO) systems which promise to break the frontiers of conventional architectures and deliver high throughput by employing more than one element at the transmitter (Tx) and receiver (Rx) in order to exploit the spatial domain. This is achieved by transmitting simultaneous data streams from different elements which impinge on the Rx with ideally unique spatial signatures as a result of the propagation paths’ interactions with the surrounding environment. This thesis is oriented to the statistical characterisation and modelling of MIMO systems and particularly of indoor and short-range channels which lend themselves a plethora of modern applications, such as wireless local networks (WLANs), peer-to-peer and vehicular communications. The contributions of the thesis are detailed below. Firstly, an indoor channel model is proposed which decorrelates the full spatial correlation matrix of a 5.2 GHzmeasuredMIMO channel and thereafter assigns the Nakagami-m distribution on the resulting uncorrelated eigenmodes. The choice of the flexible Nakagami-m density was found to better fit the measured data compared to the commonly used Rayleigh and Ricean distributions. In fact, the proposed scheme captures the spatial variations of the measured channel reasonably well and systematically outperforms two known analytical models in terms of information theory and link-level performance. The second contribution introduces an array processing scheme, namely the three-dimensional (3D) frequency domain Space Alternating Generalised Expectation Maximisation (FD-SAGE) algorithm for jointly extracting the dominant paths’ parameters. The scheme exhibits a satisfactory robustness in a synthetic environment even for closely separated sources and is applicable to any array geometry as long as its manifold is known. The algorithm is further applied to the same set of raw data so that different global spatial parameters of interest are determined; these are the multipath clustering, azimuth spreads and inter-dependency of the spatial domains. The third contribution covers the case of short-range communications which have nowadays emerged as a hot topic in the area of wireless networks. The main focus is on dual-branch MIMO Ricean systems for which a design methodology to achieve maximum capacities in the presence of Line-of-Sight (LoS) components is proposed. Moreover, a statistical eigenanalysis of these configurations is performed and novel closed-formulae for the marginal eigenvalue and condition number statistics are derived. These formulae are further used to develop an adaptive detector (AD) whose aim is to reduce the feasibility cost and complexity of Maximum Likelihood (ML)-based MIMO receivers. Finally, a tractable novel upper bound on the ergodic capacity of the above mentioned MIMO systems is presented which relies on a fundamental power constraint. The bound is sufficiently tight and applicable for arbitrary rank of the mean channel matrix, Signal-to-Noise ratio (SNR) and takes the effects of spatial correlation at both ends into account. More importantly, it includes previously reported capacity bounds as special cases

    The performance analysis of differential orthogonal space- time block codes

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants
    corecore