15,348 research outputs found

    Offline signature verification using classifier combination of HOG and LBP features

    Get PDF
    We present an offline signature verification system based on a signature’s local histogram features. The signature is divided into zones using both the Cartesian and polar coordinate systems and two different histogram features are calculated for each zone: histogram of oriented gradients (HOG) and histogram of local binary patterns (LBP). The classification is performed using Support Vector Machines (SVMs), where two different approaches for training are investigated, namely global and user-dependent SVMs. User-dependent SVMs, trained separately for each user, learn to differentiate a user’s signature from others, whereas a single global SVM trained with difference vectors of query and reference signatures’ features of all users, learns how to weight dissimilarities. The global SVM classifier is trained using genuine and forgery signatures of subjects that are excluded from the test set, while userdependent SVMs are separately trained for each subject using genuine and random forgeries. The fusion of all classifiers (global and user-dependent classifiers trained with each feature type), achieves a 15.41% equal error rate in skilled forgery test, in the GPDS-160 signature database without using any skilled forgeries in training

    Signature Verification Approach using Fusion of Hybrid Texture Features

    Full text link
    In this paper, a writer-dependent signature verification method is proposed. Two different types of texture features, namely Wavelet and Local Quantized Patterns (LQP) features, are employed to extract two kinds of transform and statistical based information from signature images. For each writer two separate one-class support vector machines (SVMs) corresponding to each set of LQP and Wavelet features are trained to obtain two different authenticity scores for a given signature. Finally, a score level classifier fusion method is used to integrate the scores obtained from the two one-class SVMs to achieve the verification score. In the proposed method only genuine signatures are used to train the one-class SVMs. The proposed signature verification method has been tested using four different publicly available datasets and the results demonstrate the generality of the proposed method. The proposed system outperforms other existing systems in the literature.Comment: Neural Computing and Applicatio

    Off-line Signature Verification Based on Fusion of Grid and Global Features Using Neural Networks

    Get PDF
    Signature is widely used and developed area of research for personal verification and authentication. In this paper Off-line Signature Verification Based on Fusion of Grid and Global Features Using Neural Networks (SVFGNN) is presented. The global and grid features are fused to generate set of features for the verification of signature. The test signature is compared with data base signatures based on the set of features and match/non match of signatures is decided with the help of Neural Network. The performance analysis is conducted on random, unskilled and skilled signature forgeries along with genuine signatures. It is observed that FAR and FRR results are improved in the proposed method compared to the existing algorithm

    Feature Representation for Online Signature Verification

    Full text link
    Biometrics systems have been used in a wide range of applications and have improved people authentication. Signature verification is one of the most common biometric methods with techniques that employ various specifications of a signature. Recently, deep learning has achieved great success in many fields, such as image, sounds and text processing. In this paper, deep learning method has been used for feature extraction and feature selection.Comment: 10 pages, 10 figures, Submitted to IEEE Transactions on Information Forensics and Securit

    Genuine Forgery Signature Detection using Radon Transform and K-Nearest Neighbour

    Get PDF
    Authentication is very much essential in managing security. In modern times, it is one in all priorities. With the advent of technology, dialogue with machines becomes automatic. As a result, the need for authentication for a variety of security purposes is rapidly increasing. For this reason, biometrics-based certification is gaining dramatic momentum. The proposed method describes an off-line Genuine/ Forgery signature classification system using radon transform and K-Nearest Neighbour classifier. Every signature features are extracted by radon transform and they are aligned to get the statistic information of his signature. To align the two signatures, the algorithm used is Extreme Points Warping. Many forged and genuine signatures are selected in K-Nearest Neighbour classifier training. By aligning the test signature with each and every reference signatures of the user, verification of test signature is done. Then the signature can be found whether it is genuine or forgery. A K-Nearest Neighbour is used for classification for the different datasets. The result determines how the proposed procedure is exceeds the current state-of-the-art technology. Approximately, the proposed system’s performance is 90 % in signature verification system

    Offline handwritten signature identification using adaptive window positioning techniques

    Full text link
    The paper presents to address this challenge, we have proposed the use of Adaptive Window Positioning technique which focuses on not just the meaning of the handwritten signature but also on the individuality of the writer. This innovative technique divides the handwritten signature into 13 small windows of size nxn(13x13).This size should be large enough to contain ample information about the style of the author and small enough to ensure a good identification performance.The process was tested with a GPDS data set containing 4870 signature samples from 90 different writers by comparing the robust features of the test signature with that of the user signature using an appropriate classifier. Experimental results reveal that adaptive window positioning technique proved to be the efficient and reliable method for accurate signature feature extraction for the identification of offline handwritten signatures.The contribution of this technique can be used to detect signatures signed under emotional duress.Comment: 13 pages, 9 figures, 2 tables, Offline Handwritten Signature, GPDS dataset, Verification, Identification, Adaptive window positionin
    corecore