111,036 research outputs found

    Autonomous mobility in multilevel networks

    Get PDF
    Autonomous Mobile Programs (AMPs) are mobile agents that are aware of their resource needs and sensitive to the execution environment. AMPs are unusual in that, instead of using some external load management system, each AMP periodically recalculates network and program parameters and independently moves to a new location if it provides a better execution environment. Dynamic load management emerges from the behaviour of collections of AMPs. AMPs have previously been measured using mobile languages like Java Voyager on local area networks (LANs). The thesis develops an accurate simulation for AMPs on networks and validates it by reproducing the behaviour of collections of AMPs on homogeneous and heterogeneous LANs. The analysis shows that AMPs exhibit thrashing like other distributed load balancers. This thrashing is investigated in collections of AMPs, and two types of redundant movement (greedy effect) are identified. The thesis explores the extent of greedy effects by simulating collections of AMPs, and proposes negotiating AMPs (NAMPs) to ameliorate the problem. The design of AMPs with a competitive negotiation scheme (cNAMPs) is presented, followed by a performance comparison AMPs and cNAMPs using simulation. To estimate the significance of the greedy effects the properties of balanced states are established, such as independent balance, singleton optimality, and consecutive optimality. The balanced states are characterised for homogeneous and heterogeneous networks where AMPs are analysed as the general case. The significance of the cNAMP greedy effect is established by conducting a worst case analysis of redundant movements, and the maximum number, and probability of, redundant movements are calculated for homogeneous and heterogeneous networks. One of three theorems proves that in a heterogeneous network of q subnetworks the number of redundant movements does not exceed q − 1. i The thesis proposes and evaluates a multilevel cNAMP architecture that abstracts over network topologies to effectively distribute cNAMPs in large networks. The thesis investigates alternatives for implementation of this multilevel architecture and proposes a fusion-based scheme where information is first available to neighbour nodes. These neighbour nodes modify the information and pass it to remote locations. The effectiveness of the scheme is evaluated by simulating networks with up to five levels, varying the number of locations from 5 to 336, and the number of cNAMPs from 8 to 3360. The experiments investigate the effects depending on the number of levels, topologies, number of locations, number of cNAMPs, work of cNAMPs, type of cNAMPs, speed of locations, and type of rebalancing. The architecture is found to be effective because it delivers performance close to the hypothetical, e.g. each additional level increases mean cNAMP completion time by just 2%

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    • …
    corecore