386 research outputs found

    Management, Optimization and Evolution of the LHCb Online Network

    Get PDF
    The LHCb experiment is one of the four large particle detectors running at the Large Hadron Collider (LHC) at CERN. It is a forward single-arm spectrometer dedicated to test the Standard Model through precision measurements of Charge-Parity (CP) violation and rare decays in the b quark sector. The LHCb experiment will operate at a luminosity of 2x10^32cm-2s-1, the proton-proton bunch crossings rate will be approximately 10 MHz. To select the interesting events, a two-level trigger scheme is applied: the rst level trigger (L0) and the high level trigger (HLT). The L0 trigger is implemented in custom hardware, while HLT is implemented in software runs on the CPUs of the Event Filter Farm (EFF). The L0 trigger rate is dened at about 1 MHz, and the event size for each event is about 35 kByte. It is a serious challenge to handle the resulting data rate (35 GByte/s). The Online system is a key part of the LHCb experiment, providing all the IT services. It consists of three major components: the Data Acquisition (DAQ) system, the Timing and Fast Control (TFC) system and the Experiment Control System (ECS). To provide the services, two large dedicated networks based on Gigabit Ethernet are deployed: one for DAQ and another one for ECS, which are referred to Online network in general. A large network needs sophisticated monitoring for its successful operation. Commercial network management systems are quite expensive and dicult to integrate into the LHCb ECS. A custom network monitoring system has been implemented based on a Supervisory Control And Data Acquisition (SCADA) system called PVSS which is used by LHCb ECS. It is a homogeneous part of the LHCb ECS. In this thesis, it is demonstrated how a large scale network can be monitored and managed using tools originally made for industrial supervisory control. The thesis is organized as the follows: Chapter 1 gives a brief introduction to LHC and the B physics on LHC, then describes all sub-detectors and the trigger and DAQ system of LHCb from structure to performance. Chapter 2 first introduces the LHCb Online system and the dataflow, then focuses on the Online network design and its optimization. In Chapter 3, the SCADA system PVSS is introduced briefly, then the architecture and implementation of the network monitoring system are described in detail, including the front-end processes, the data communication and the supervisory layer. Chapter 4 first discusses the packet sampling theory and one of the packet sampling mechanisms: sFlow, then demonstrates the applications of sFlow for the network trouble-shooting, the traffic monitoring and the anomaly detection. In Chapter 5, the upgrade of LHC and LHCb is introduced, the possible architecture of DAQ is discussed, and two candidate internetworking technologies (high speed Ethernet and InfniBand) are compared in different aspects for DAQ. Three schemes based on 10 Gigabit Ethernet are presented and studied. Chapter 6 is a general summary of the thesis

    Routing on the Channel Dependency Graph:: A New Approach to Deadlock-Free, Destination-Based, High-Performance Routing for Lossless Interconnection Networks

    Get PDF
    In the pursuit for ever-increasing compute power, and with Moore's law slowly coming to an end, high-performance computing started to scale-out to larger systems. Alongside the increasing system size, the interconnection network is growing to accommodate and connect tens of thousands of compute nodes. These networks have a large influence on total cost, application performance, energy consumption, and overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which define the packet paths through the network, do not utilize this important resource efficiently. Topology-aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are irregular by design, or most often a result of hardware failures. Exchanging faulty network components potentially requires whole system downtime further increasing the cost of the failure. This management approach becomes more and more impractical due to the scale of today's networks and the accompanying steady decrease of the mean time between failures. Alternative methods of operating and maintaining these high-performance interconnects, both in terms of hardware- and software-management, are necessary to mitigate negative effects experienced by scientific applications executed on the supercomputer. However, existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. Using the fail-in-place strategy, a well-established method for storage systems to repair only critical component failures, is a feasible solution for current and future HPC interconnects as well as other large-scale installations such as data center networks. Although, an appropriate combination of topology and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either during system design or while it is in operation. On top of this foundation, a key contribution is a novel scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall network utilization. The scheduling-aware routing performs frequent property preserving routing updates to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic, scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem. Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the channel dependency graph, which allows the design of an universally applicable destination-based routing capable of optimizing the path balancing without exceeding a given number of virtual channels, which are a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during path calculation, instead of solving both problems separately as all previous solutions

    Hybrid High Performance Computing (HPC) + Cloud for Scientific Computing

    Get PDF
    The HPC+Cloud framework has been built to enable on-premise HPC jobs to use resources from cloud computing nodes. As part of designing the software framework, public cloud providers, namely Amazon AWS, Microsoft Azure and NeCTAR were benchmarked against one another, and Microsoft Azure was determined to be the most suitable cloud component in the proposed HPC+Cloud software framework. Finally, an HPC+Cloud cluster was built using the HPC+Cloud software framework and then was validated by conducting HPC processing benchmarks

    Exascale Deep Learning for Climate Analytics

    Full text link
    We extract pixel-level masks of extreme weather patterns using variants of Tiramisu and DeepLabv3+ neural networks. We describe improvements to the software frameworks, input pipeline, and the network training algorithms necessary to efficiently scale deep learning on the Piz Daint and Summit systems. The Tiramisu network scales to 5300 P100 GPUs with a sustained throughput of 21.0 PF/s and parallel efficiency of 79.0%. DeepLabv3+ scales up to 27360 V100 GPUs with a sustained throughput of 325.8 PF/s and a parallel efficiency of 90.7% in single precision. By taking advantage of the FP16 Tensor Cores, a half-precision version of the DeepLabv3+ network achieves a peak and sustained throughput of 1.13 EF/s and 999.0 PF/s respectively.Comment: 12 pages, 5 tables, 4, figures, Super Computing Conference November 11-16, 2018, Dallas, TX, US
    • …
    corecore