6 research outputs found

    Enhancing Spectrum Sensing via Reconfigurable Intelligent Surfaces: Passive or Active Sensing and How Many Reflecting Elements are Needed?

    Full text link
    Cognitive radio has been proposed to alleviate the scarcity of available spectrum caused by the significant demand for wideband services and the fragmentation of spectrum resources. However, sensing performance is quite poor due to the low sensing signal-to-noise ratio, especially in complex environments with severe channel fading. Fortunately, reconfigurable intelligent surface (RIS)-aided spectrum sensing can effectively tackle the above challenge due to its high array gain. Nevertheless, the traditional passive RIS may suffer from the ``double fading'' effect, which severely limits the performance of passive RIS-aided spectrum sensing. Thus, a crucial challenge is how to fully exploit the potential advantages of the RIS and further improve the sensing performance. To this end, we introduce the active RIS into spectrum sensing and respectively formulate two optimization problems for the passive RIS and the active RIS to maximize the detection probability. In light of the intractability of the formulated problems, we develop a one-stage optimization algorithm with inner approximation and a two-stage optimization algorithm with a bisection method to obtain sub-optimal solutions, and apply the Rayleigh quotient to obtain the upper and lower bounds of the detection probability. Furthermore, in order to gain more insight into the impact of the RIS on spectrum sensing, we respectively investigate the number configuration for passive RIS and active RIS and analyze how many reflecting elements are needed to achieve the detection probability close to 1. Simulation results verify that the proposed algorithms outperform existing algorithms under the same parameter configuration, and achieve a detection probability close to 1 with even fewer reflecting elements or antennas than existing schemes

    Underlay Drone Cell for Temporary Events: Impact of Drone Height and Aerial Channel Environments

    Full text link
    Providing seamless connection to a large number of devices is one of the biggest challenges for the Internet of Things (IoT) networks. Using a drone as an aerial base station (ABS) to provide coverage to devices or users on ground is envisaged as a promising solution for IoT networks. In this paper, we consider a communication network with an underlay ABS to provide coverage for a temporary event, such as a sporting event or a concert in a stadium. Using stochastic geometry, we propose a general analytical framework to compute the uplink and downlink coverage probabilities for both the aerial and the terrestrial cellular system. Our framework is valid for any aerial channel model for which the probabilistic functions of line-of-sight (LOS) and non-line-of-sight (NLOS) links are specified. The accuracy of the analytical results is verified by Monte Carlo simulations considering two commonly adopted aerial channel models. Our results show the non-trivial impact of the different aerial channel environments (i.e., suburban, urban, dense urban and high-rise urban) on the uplink and downlink coverage probabilities and provide design guidelines for best ABS deployment height.Comment: This work is accepted to appear in IEEE Internet of Things Journal Special Issue on UAV over IoT. Copyright may be transferred without notice, after which this version may no longer be accessible. arXiv admin note: text overlap with arXiv:1801.0594

    A DRL Approach for RIS-Assisted Full-Duplex UL and DL Transmission: Beamforming, Phase Shift and Power Optimization

    Full text link
    In this work, a two-stage deep reinforcement learning (DRL) approach is presented for a full-duplex (FD) transmission scenario that does not depend on the channel state information (CSI) knowledge to predict the phase-shifts of reconfigurable intelligent surface (RIS), beamformers at the base station (BS), and the transmit powers of BS and uplink users in order to maximize the weighted sum rate of uplink and downlink users. As the self-interference (SI) cancellation and beamformer design are coupled problems, the first stage uses a least squares method to partially cancel self-interference (SI) and initiate learning, while the second stage uses DRL to make predictions and achieve performance close to methods with perfect CSI knowledge. Further, to reduce the signaling from BS to the RISs, a DRL framework is proposed that predicts quantized RIS phase-shifts and beamformers using 3232 times fewer bits than the continuous version. The quantized methods have reduced action space and therefore faster convergence; with sufficient training, the UL and DL rates for the quantized phase method are 8.14%8.14\% and 2.45%2.45\% better than the continuous phase method respectively. The RIS elements can be grouped to have similar phase-shifts to further reduce signaling, at the cost of reduced performance

    Advanced channel coding techniques using bit-level soft information

    Get PDF
    In this dissertation, advanced channel decoding techniques based on bit-level soft information are studied. Two main approaches are proposed: bit-level probabilistic iterative decoding and bit-level algebraic soft-decision (list) decoding (ASD). In the first part of the dissertation, we first study iterative decoding for high density parity check (HDPC) codes. An iterative decoding algorithm, which uses the sum product algorithm (SPA) in conjunction with a binary parity check matrix adapted in each decoding iteration according to the bit-level reliabilities is proposed. In contrast to the common belief that iterative decoding is not suitable for HDPC codes, this bit-level reliability based adaptation procedure is critical to the conver-gence behavior of iterative decoding for HDPC codes and it significantly improves the iterative decoding performance of Reed-Solomon (RS) codes, whose parity check matrices are in general not sparse. We also present another iterative decoding scheme for cyclic codes by randomly shifting the bit-level reliability values in each iteration. The random shift based adaptation can also prevent iterative decoding from getting stuck with a significant complexity reduction compared with the reliability based parity check matrix adaptation and still provides reasonable good performance for short-length cyclic codes. In the second part of the dissertation, we investigate ASD for RS codes using bit-level soft information. In particular, we show that by carefully incorporating bit¬level soft information in the multiplicity assignment and the interpolation step, ASD can significantly outperform conventional hard decision decoding (HDD) for RS codes with a very small amount of complexity, even though the kernel of ASD is operating at the symbol-level. More importantly, the performance of the proposed bit-level ASD can be tightly upper bounded for practical high rate RS codes, which is in general not possible for other popular ASD schemes. Bit-level soft-decision decoding (SDD) serves as an efficient way to exploit the potential gain of many classical codes, and also facilitates the corresponding per-formance analysis. The proposed bit-level SDD schemes are potential and feasible alternatives to conventional symbol-level HDD schemes in many communication sys-tems

    Aeronautical engineering: A cumulative index to a continuing bibliography

    Get PDF
    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037 (197) through NASA SP-7037 (208) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes
    corecore