774 research outputs found

    Medium access control mechanisms for high speed metropolitan area networks

    Get PDF
    In this dissertation novel Medium Access Control mechanisms for High Speed Metropolitan Area networks are proposed and their performance is investigated under the presence of single and multiple priority classes of traffic. The proposed mechanisms are based on the Distributed Queue Dual Bus network, which has been adopted by the IEEE standardization committee as the 802.6 standard for Metropolitan Area Networks, and address most of its performance limitations. First, the Rotating Slot Generator scheme is introduced which uses the looped bus architecture that has been proposed for the 802.6 network. According to this scheme the responsibility for generating slots moves periodically from station to station around the loop. In this way, the positions of the stations relative to the slot generator change continuously, and therefore, there are no favorable locations on the busses. Then, two variations of a new bandwidth balancing mechanism, the NSW_BWB and ITU_NSW are introduced. Their main advantage is that their operation does not require the wastage of channel slots and for this reason they can converge very fast to the steady state, where the fair bandwidth allocation is achieved. Their performance and their ability to support multiple priority classes of traffic are thoroughly investigated. Analytic estimates for the stations\u27 throughputs and average segment delays are provided. Moreover, a novel, very effective priority mechanism is introduced which can guarantee almost immediate access for high priority traffic, regardless of the presence of lower priority traffic. Its performance is thoroughly investigated and its ability to support real time traffic, such as voice and video, is demonstrated. Finally, the performance under the presence of erasure nodes of the various mechanisms that have been proposed in this dissertation is examined and compared to the corresponding performance of the most prominent existing mechanisms

    Computing in the RAIN: a reliable array of independent nodes

    Get PDF
    The RAIN project is a research collaboration between Caltech and NASA-JPL on distributed computing and data-storage systems for future spaceborne missions. The goal of the project is to identify and develop key building blocks for reliable distributed systems built with inexpensive off-the-shelf components. The RAIN platform consists of a heterogeneous cluster of computing and/or storage nodes connected via multiple interfaces to networks configured in fault-tolerant topologies. The RAIN software components run in conjunction with operating system services and standard network protocols. Through software-implemented fault tolerance, the system tolerates multiple node, link, and switch failures, with no single point of failure. The RAIN-technology has been transferred to Rainfinity, a start-up company focusing on creating clustered solutions for improving the performance and availability of Internet data centers. In this paper, we describe the following contributions: 1) fault-tolerant interconnect topologies and communication protocols providing consistent error reporting of link failures, 2) fault management techniques based on group membership, and 3) data storage schemes based on computationally efficient error-control codes. We present several proof-of-concept applications: a highly-available video server, a highly-available Web server, and a distributed checkpointing system. Also, we describe a commercial product, Rainwall, built with the RAIN technology

    Content-access QoS in peer-to-peer networks using a fast MDS erasure code

    Get PDF
    This paper describes an enhancement of content access Quality of Service in peer to peer (P2P) networks. The main idea is to use an erasure code to distribute the information over the peers. This distribution increases the users’ choice on disseminated encoded data and therefore statistically enhances the overall throughput of the transfer. A performance evaluation based on an original model using the results of a measurement campaign of sequential and parallel downloads in a real P2P network over Internet is presented. Based on a bandwidth distribution, statistical content-access QoS are guaranteed in function of both the content replication level in the network and the file dissemination strategies. A simple application in the context of media streaming is proposed. Finally, the constraints on the erasure code related to the proposed system are analysed and a new fast MDS erasure code is proposed, implemented and evaluated

    Fair and efficient transmission over GBPS dual ring networks

    Get PDF
    The advances in fiber optics technology provide large bandwidth and enable the support of a wide variety of services. New network architectures have been proposed, such as Metaring and Distributed Queue Dual Bus (DQDB), that try to take advantage of the new capabilities. Because of the very small packet transmission time relative to the feedback time a challenging issue in high speed networks is the efficient and fair share of the channel bandwidth among the competing users. In this thesis we first investigate and compare the performance of the Global and Local Fairness Mechanisms (GFM and LFM, respectively). They have been proposed recently for fair bandwidth allocation in high speed dual ring networks employing destination release. (a slot that has been read by its destination is immediately released and can be used again by other nodes). We show the sensitivity of both mechanisms to various system parameters, such as channel bandwidth and ring latency. We introduce the Dynamic Medium Access Control Mechanism (DMAC) which does not suffer from the limitations of GFM and LFM, introduces fairness in a very effective and efficient way, and is insensitive to the network parameters

    Exploring heterogeneity of unreliable machines for p2p backup

    Full text link
    P2P architecture is a viable option for enterprise backup. In contrast to dedicated backup servers, nowadays a standard solution, making backups directly on organization's workstations should be cheaper (as existing hardware is used), more efficient (as there is no single bottleneck server) and more reliable (as the machines are geographically dispersed). We present the architecture of a p2p backup system that uses pairwise replication contracts between a data owner and a replicator. In contrast to standard p2p storage systems using directly a DHT, the contracts allow our system to optimize replicas' placement depending on a specific optimization strategy, and so to take advantage of the heterogeneity of the machines and the network. Such optimization is particularly appealing in the context of backup: replicas can be geographically dispersed, the load sent over the network can be minimized, or the optimization goal can be to minimize the backup/restore time. However, managing the contracts, keeping them consistent and adjusting them in response to dynamically changing environment is challenging. We built a scientific prototype and ran the experiments on 150 workstations in the university's computer laboratories and, separately, on 50 PlanetLab nodes. We found out that the main factor affecting the quality of the system is the availability of the machines. Yet, our main conclusion is that it is possible to build an efficient and reliable backup system on highly unreliable machines (our computers had just 13% average availability)

    An Efficient Analysis on Performance Metrics for optimized Wireless Sensor Network

    Full text link
    Wireless Sensor Networks have the revolutionary significance in many new monitoring applications and self-organized systems. Based on the nature of application WSN are needed to support various levels of Quality of Services. Quality of service parameters are most significant aspect in WSN during data transmission from sensor nodes to sink. This paper surveys the factor on reliability, predictability, sustainability, optimal clustering and scheduling by analyzing various models existing in WSN. A network that satisfies all these Qos parameters ensures outstanding throughput in performance. We concluded by exploring some of the dimensions for research interest and addressed open issues ahead to enhance the performance of WSNs
    • 

    corecore