221 research outputs found

    A Benchmark for Image Retrieval using Distributed Systems over the Internet: BIRDS-I

    Full text link
    The performance of CBIR algorithms is usually measured on an isolated workstation. In a real-world environment the algorithms would only constitute a minor component among the many interacting components. The Internet dramati-cally changes many of the usual assumptions about measuring CBIR performance. Any CBIR benchmark should be designed from a networked systems standpoint. These benchmarks typically introduce communication overhead because the real systems they model are distributed applications. We present our implementation of a client/server benchmark called BIRDS-I to measure image retrieval performance over the Internet. It has been designed with the trend toward the use of small personalized wireless systems in mind. Web-based CBIR implies the use of heteroge-neous image sets, imposing certain constraints on how the images are organized and the type of performance metrics applicable. BIRDS-I only requires controlled human intervention for the compilation of the image collection and none for the generation of ground truth in the measurement of retrieval accuracy. Benchmark image collections need to be evolved incrementally toward the storage of millions of images and that scaleup can only be achieved through the use of computer-aided compilation. Finally, our scoring metric introduces a tightly optimized image-ranking window.Comment: 24 pages, To appear in the Proc. SPIE Internet Imaging Conference 200

    The Parallel Distributed Image Search Engine (ParaDISE)

    Get PDF
    Image retrieval is a complex task that differs according to the context and the user requirements in any specific field, for example in a medical environment. Search by text is often not possible or optimal and retrieval by the visual content does not always succeed in modelling high-level concepts that a user is looking for. Modern image retrieval techniques consists of multiple steps and aim to retrieve information from large–scale datasets and not only based on global image appearance but local features and if possible in a connection between visual features and text or semantics. This paper presents the Parallel Distributed Image Search Engine (ParaDISE), an image retrieval system that combines visual search with text–based retrieval and that is available as open source and free of charge. The main design concepts of ParaDISE are flexibility, expandability, scalability and interoperability. These concepts constitute the system, able to be used both in real–world applications and as an image retrieval research platform. Apart from the architecture and the implementation of the system, two use cases are described, an application of ParaDISE in retrieval of images from the medical literature and a visual feature evaluation for medical image retrieval. Future steps include the creation of an open source community that will contribute and expand this platform based on the existing parts

    Human-Centered Content-Based Image Retrieval

    Get PDF
    Retrieval of images that lack a (suitable) annotations cannot be achieved through (traditional) Information Retrieval (IR) techniques. Access through such collections can be achieved through the application of computer vision techniques on the IR problem, which is baptized Content-Based Image Retrieval (CBIR). In contrast with most purely technological approaches, the thesis Human-Centered Content-Based Image Retrieval approaches the problem from a human/user centered perspective. Psychophysical experiments were conducted in which people were asked to categorize colors. The data gathered from these experiments was fed to a Fast Exact Euclidean Distance (FEED) transform (Schouten & Van den Broek, 2004), which enabled the segmentation of color space based on human perception (Van den Broek et al., 2008). This unique color space segementation was exploited for texture analysis and image segmentation, and subsequently for full-featured CBIR. In addition, a unique CBIR-benchmark was developed (Van den Broek et al., 2004, 2005). This benchmark was used to explore what and how several parameters (e.g., color and distance measures) of the CBIR process influence retrieval results. In contrast with other research, users judgements were assigned as metric. The online IR and CBIR system Multimedia for Art Retrieval (M4ART) (URL: http://www.m4art.org) has been (partly) founded on the techniques discussed in this thesis. References: - Broek, E.L. van den, Kisters, P.M.F., and Vuurpijl, L.G. (2004). The utilization of human color categorization for content-based image retrieval. Proceedings of SPIE (Human Vision and Electronic Imaging), 5292, 351-362. [see also Chapter 7] - Broek, E.L. van den, Kisters, P.M.F., and Vuurpijl, L.G. (2005). Content-Based Image Retrieval Benchmarking: Utilizing Color Categories and Color Distributions. Journal of Imaging Science and Technology, 49(3), 293-301. [see also Chapter 8] - Broek, E.L. van den, Schouten, Th.E., and Kisters, P.M.F. (2008). Modeling Human Color Categorization. Pattern Recognition Letters, 29(8), 1136-1144. [see also Chapter 5] - Schouten, Th.E. and Broek, E.L. van den (2004). Fast Exact Euclidean Distance (FEED) transformation. In J. Kittler, M. Petrou, and M. Nixon (Eds.), Proceedings of the 17th IEEE International Conference on Pattern Recognition (ICPR 2004), Vol 3, p. 594-597. August 23-26, Cambridge - United Kingdom. [see also Appendix C

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Improving utilization of heterogeneous clusters

    Get PDF
    Datacenters often agglutinate sets of nodes with different capabilities, leading to a sub-optimal resource utilization. One of the best ways of improving utilization is to balance the load by taking into account the heterogeneity of these clusters. This article presents a novel way of expressing computational capacity, more adequate for heterogeneous clusters, and also advocates for task migration in order to further improve the utilization. The experimental evaluation shows that both proposals are advantageous and allow improving the utilization of heterogeneous clusters and reducing the makespan to 16.7% and 17.1%, respectively.This work has been supported by the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R and TIN2016-81840-REDT (CAPAP-H6 network) and the European HiPEAC Network of Excellenc

    Recuperação por conteudo em grandes coleções de imagens heterogeneas

    Get PDF
    Orientador: Alexandre Xavier FalcãoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação CientificaResumo: A recuperação de imagens por conteúdo (CBIR) é uma área que vem recebendo crescente atenção por parte da comunidade científica por causa do crescimento exponencial do número de imagens que vêm sendo disponibilizadas, principalmente na WWW. À medida que cresce o volume de imagens armazenadas, Cresce também o interesse por sistemas capazes de recuperar eficientemente essas imagens a partir do seu conteúdo visual. Nosso trabalho concentrou-se em técnicas que pudessem ser aplicadas em grandes coleções de imagens heterogêneas. Nesse tipo de coleção, não se pode assumir nenhum tipo de conhecimento sobre o conteúdo semântico e ou visual das imagens, e o custo de utilizar técnicas semi-automáticas (com intervenção humana) é alto em virtude do volume e da heterogeneidade das imagens que precisam ser analisadas. Nós nos concentramos na informação de cor presente nas imagens, e enfocamos os três tópicos que consideramos mais importantes para se realizar a recuperação de imagens baseada em cor: (1) como analisar e extrair informação de cor das imagens de forma automática e eficiente; (2) como representar essa informação de forma compacta e efetiva; e (3) como comparar eficientemente as características visuais que descrevem duas imagens. As principais contribuições do nosso trabalho foram dois algoritmos para a análise automática do conteúdo visual das imagens (CBC e BIC), duas funções de distância para a comparação das informações extraídas das imagens (MiCRoM e dLog) e urna representação alternativa para abordagens que decompõem e representam imagens a partir de células de tamanho fixo (CCIf)Abstract: Content-based image retrieval (CBIR) is an area that has received increasing attention from the scientific community due to the exponential growing of available images, mainly at the WWW.This has spurred great interest for systems that are able to efficiently retrieve images according to their visual content. Our work has focused in techniques suitable for broad image domains. ln a broad image domain, it is not possible to assume or use any a p1'ior'i knowledge about the visual content and/or semantic content of the images. Moreover, the cost of using semialitomatic image analysis techniques is prohibitive because of the heterogeneity and the amount of images that must be analyzed. We have directed our work to color-based image retrieval, and have focused on the three main issues that should be addressed in order to achieve color-based image retrieval: (1) how to analyze and describe images in an automatic and efficient way; (2) how to represent the image content in a compact and effective way; and (3) how to efficiently compare the visual features extracted from the images. The main contributions of our work are two algorithms to automatically analyze the visual content of the images (CBC and BIC), two distance functions to compare the visual features extracted from the images (MiCRoM and dLog), and an alteruative representation for CBIR approaches that decompose and represent images according to a grid of equalsized cells (CCH)DoutoradoDoutor em Ciência da Computaçã

    A Resource Aware MapReduce Based Parallel SVM for Large Scale Image Classifications

    Get PDF
    Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them support vector machines (SVMs) are used extensively due to their generalization properties. However, SVM training is notably a computationally intensive process especially when the training dataset is large. This paper presents RASMO, a resource aware MapReduce based parallel SVM algorithm for large scale image classifications which partitions the training data set into smaller subsets and optimizes SVM training in parallel using a cluster of computers. A genetic algorithm based load balancing scheme is designed to optimize the performance of RASMO in heterogeneous computing environments. RASMO is evaluated in both experimental and simulation environments. The results show that the parallel SVM algorithm reduces the training time significantly compared with the sequential SMO algorithm while maintaining a high level of accuracy in classifications.National Basic Research Program (973) of China under Grant 2014CB34040

    Practical Isolated Searchable Encryption in a Trusted Computing Environment

    Get PDF
    Cloud computing has become a standard computational paradigm due its numerous advantages, including high availability, elasticity, and ubiquity. Both individual users and companies are adopting more of its services, but not without loss of privacy and control. Outsourcing data and computations to a remote server implies trusting its owners, a problem many end-users are aware. Recent news have proven data stored on Cloud servers is susceptible to leaks from the provider, third-party attackers, or even from government surveillance programs, exposing users’ private data. Different approaches to tackle these problems have surfaced throughout the years. Naïve solutions involve storing data encrypted on the server, decrypting it only on the client-side. Yet, this imposes a high overhead on the client, rendering such schemes impractical. Searchable Symmetric Encryption (SSE) has emerged as a novel research topic in recent years, allowing efficient querying and updating over encrypted datastores in Cloud servers, while retaining privacy guarantees. Still, despite relevant recent advances, existing SSE schemes still make a critical trade-off between efficiency, security, and query expressiveness, thus limiting their adoption as a viable technology, particularly in large-scale scenarios. New technologies providing Isolated Execution Environments (IEEs) may help improve SSE literature. These technologies allow applications to be run remotely with privacy guarantees, in isolation from other, possibly privileged, processes inside the CPU, such as the operating system kernel. Prominent example technologies are Intel SGX and ARM TrustZone, which are being made available in today’s commodity CPUs. In this thesis we study these new trusted hardware technologies in depth, while exploring their application to the problem of searching over encrypted data, primarily focusing in SGX. In more detail, we study the application of IEEs in SSE schemes, improving their efficiency, security, and query expressiveness. We design, implement, and evaluate three new SSE schemes for different query types, namely Boolean queries over text, similarity queries over image datastores, and multimodal queries over text and images. These schemes can support queries combining different media formats simultaneously, envisaging applications such as privacy-enhanced medical diagnosis and management of electronic-healthcare records, or confidential photograph catalogues, running without the danger of privacy breaks in Cloud-based provisioned services
    • …
    corecore