916 research outputs found

    Outage analysis of cognitive hybrid satellite-terrestrial networks with hardware impairments and multi-primary users

    Get PDF
    This paper investigates the effects of practical hardware impairments (HIs) on a cognitive hybrid satellite-terrestrial networks (CHSTN) with multiple primary users (PUs). The widely-employed Shadowed-Rician fading distribution is adopted to model the satellite-terrestrial channel. CHSTN can provide comprehensive wireless coverage as well as enhanced spectrum resource usage by considering the requirements of both spectrum efficiency and reliability. Specifically, we derive the closed-form expression of the outage probability (OP) for the considered system in the presence of interference power constraints imposed by multiple adjacent terrestrial PUs. To gain further insights at high signal-to-noise ratios (SNRs), the asymptotic expression for the OP is also derived. Numerical results confirm the correctness and effectiveness of our performance analysis

    Hybrid satellite-terrestrial relay network: proposed model and application of power splitting multiple access

    Get PDF
    The development of hybrid satellite-terrestrial relay networks (HSTRNs) is one of the driving forces for revolutionizing satellite communications in the modern era. Although there are many unique features of conventional satellite networks, their evolution pace is much slower than the terrestrial wireless networks. As a result, it is becoming more important to use HSTRNs for the seamless integration of terrestrial cellular and satellite communications. With this intent, this paper provides a comprehensive performance evaluation of HSTRNs employing non-orthogonal multiple access technique. The terrestrial relay is considered to be wireless-powered and harvests energy from the radio signal of the satellite. For the sake of comparison, both amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols are considered. Subsequently, the closed-form expressions of outage probabilities and ergodic capacities are derived for each relaying protocol. Extensive simulations are performed to verify the accuracy of the obtained closed-form expressions. The results provided in this work characterize the outage and capacity performance of such a HSTRN.publishe

    Wireless Energy Harvesting Assisted Two-Way Cognitive Relay Networks: Protocol Design and Performance Analysis

    Get PDF

    UAV based satellite-terrestrial systems with hardware impairment and imperfect SIC: Performance analysis of user pairs

    Get PDF
    We investigated the outage performance of non-orthogonal multiple access (NOMA) in satellite-terrestrial systems which contain hardware impairments. An unmanned aerial vehicle (UAV) was implemented to forward signals from a satellite to users on the ground. A two-user model was applied to achieve spectral efficiency. In practical, real-life scenarios, the UAV and ground users encounter issues with imperfect hardware. We examined the performance gap between two users experiencing practical problems such as hardware impairment and imperfect successive interference cancellation (SIC). To implement a practical scenario, Shadow-Rician fading was adopted in the satellite links, and Rician fading was employed in the terrestrial links for ground users. In the main results, we derived the closed-form expression of the outage probability, and to evaluate the system performance of two NOMA users, we obtained the approximate expressions for high signal-to-noise ratios (SNR). Finally, we produced Monte-Carlo simulations to verify the analytical expressions and demonstrate the effect of the main system parameters, such as the number of transmit antennas on the satellite, transmit SNR, and level of hardware impairment on the system performance metric.Web of Science911793711792

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed
    • …
    corecore