667 research outputs found

    Resource Allocation in Relay Networks

    Get PDF
    Demand for high data rates is increasing rapidly, due to the rapid rise of mobile data traffic volume. In order to meet the demands, the future generation of wireless communication systems has to support higher data rates and quality of service. The inherent unreliable and unpredictable nature of wireless medium provides a challenge for increasing the data rate. Cooperative communications, is a prominent technique to combat the detrimental fading effect in wireless communications. Adding relay nodes to the network, and creating s virtual multiple-input multiple-output (MIMO) antenna array is proven to be an efficient method to mitigate the multipath fading and expand the network coverage. Therefore, cooperative relaying is considered as a fundamental element in the Long Term Evolution (LTE)-Advanced standard. In this thesis, we address the problem of resource allocation in cooperative networks. We provide a detailed review on the resource allocation problem. We look at the joint subcarrier-relay assignment and power allocation. The objective of this optimization problem is to allocate the resources fairly, so even the cell-edge users with weakest communication links receive a fair share of resources. We propose a simple and practical algorithm to find the optimal solution. We assess the performance of the proposed algorithm by providing simulations. Furthermore, we investigate the optimality and complexity of the proposed algorithm. Due to the layered architecture of the wireless networks, to achieve the optimal performance it is necessary that the design of the algorithms be based on the underlying physical and link layers. For a cooperative network with correlated channels, we propose a cross-layer algorithm for relay selection, based on both the physical and link-layer characteristics, in order to maximize the linklayer throughput. The performance of the proposed algorithm is studied in different network models. Furthermore, we investigate the optimum number of relays required for cooperation in order to achieve maximum throughput. Buffering has proven to improve the performance of the cooperative network. In light of this, we study the performance of buffer-aided relay selection. In order to move one step closer to the practical applications, we consider a system with coded transmissions. We study three different coding schemes: convolutional code, Turbo code, and distributed Turbo code (DTC). For each scheme, the performance of the system is simulated and assessed analytically. We derive a closed form expression of the average throughput. Using the analysis results, we investigate the diversity gain of the system in asymptotic conditions. Further, we investigate the average transmission delay for different schemes

    Performance of Transmit Antenna Selection in Multiple Input Multiple Output-Orthogonal Space Time Block Code (MIMO-OSTBC) System Joint with Bose-Chaudhuri-Hocquenghem (BCH)-Turbo Code (TC) in Rayleigh Fading Channel

    Get PDF
    To enhancing the performance of spatial modulation (SM) systems TAS (Transmit antenna selection) technique need to be essential. This TAS is an effective technique for reducing the Multiple Input Multiple Output (MIMO) systems computational difficulty and Bit error rate (BER) can increase remarkably by various TAS algorithms. But these selection methods cannot provide code gain, so it is essential to join the TAS with external code to obtain code gain advantages in BER. In some existing work, the improved BER has been perceived by joining Forward Error Correction Code (FEC) and Space Time Block Code (STBC) for MIMO systems provided greater code gain. A multiple TAS-OSTBC technique with new integration of Boseñ€“Chaudhuriñ€“Hocquenghem (BCH)-Turbo code (TC) is proposed in our paper. With external BCH code in sequence with the inner Turbo code, the TAS-OSTBC system is joining. This combination can provide increasing code gain and the effective advantages of the TAS-OSTBC system. To perform the system analysis Rayleigh channel is utilized. In the case with multiple TAS-OSTBC systems, better performance can provide by this new joint of the BCH-Turbo compared to the conventional Turbo code for the Rayleigh fading

    Joint Channel-and-Network Coding Using EXIT Chart Aided Relay Activation

    No full text
    This paper presents a relay activation scheme designed for joint channel-and-network (JCN) coded systems relying on an iterative decoding. A primary focus is on proposing criteria of the relay activation to find the best user combination for cooperative relaying, which exploits extrinsic information transfer (EXIT) chart analysis. We will demonstrate that the EXIT chart aided relay activation scheme is capable of reducing the probability of outages, despite increasing the effective throughput of network

    Five decades of hierarchical modulation and its benefits in relay-aided networking

    No full text
    Hierarchical modulation (HM), which is also known as layered modulation, has been widely adopted across the telecommunication industry. Its strict backward compatibility with single-layer modems and its low complexity facilitate the seamless upgrading of wireless communication services. The specific features of HM may be conveniently exploited for improving the throughput/information-rate of the system without requiring any extra bandwidth, while its complexity may even be lower than that of the equivalent system relying on conventional modulation schemes. As a recent research trend, the potential employment of HM in the context of cooperative communications has also attracted substantial research interests. Motivated by the lower complexity and higher flexibility of HM, we provide a comprehensive survey and conclude with a range of promising future research directions. Our contribution is the conception of a new cooperative communication paradigm relying on turbo trellis-coded modulation-aided twin-layer HM-16QAM and the analytical performance investigation of a four-node cooperative communication network employing a novel opportunistic routing algorithm. The specific performance characteristics evaluated include the distribution of delay, the outage probability, the transmit power of each node, the average packet power consumption, and the system throughput. The simulation results have demonstrated that when transmitting the packets formed by layered modulated symbol streams, our opportunistic routing algorithm is capable of reducing the transmit power required for each node in the network compared with that of the system using the traditional opportunistic routing algorithm. We have also illustrated that the minimum packet power consumption of our system using our opportunistic routing algorithm is also lower than that of the system using the traditional opportunistic routing algorithm

    Performance of cognitive stop-and-wait hybrid automatic repeat request in the face of imperfect sensing

    No full text
    The cognitive radio (CR) paradigm has the potential of improving the exploitation of the electromagnetic spectrum by detecting instantaneously unoccupied spectrum slots allocated to primary users (PUs). In order to support the process of spectrum reuse, we consider a CR scheme, which senses and opportunistically accesses a PU's spectrum for communication between a pair of nodes relying on the stop-and-wait hybrid automatic repeat request (SW-HARQ) protocol. This arrangement is represented by the cognitive SW-HARQ (CSW-HARQ), where the availability/unavailability of the PU's channel is modeled as a two-state Markov chain having OFF and ON states, respectively. Once the cognitive user (CU) finds that the PU's channel is available (i.e., in the OFF state), the CU transmits data over the PU channel's spectrum, while relying on the principles of SW-HARQ. We investigate both the throughput and the delay of CSW-HARQ, with a special emphasis on the impact of the various system parameters involved in the scenarios of both perfect and imperfect spectrum sensing. Furthermore, we analyze both the throughput as well as the average packet delay and end-to-end packet delay of the CSW-HARQ system. We propose a pair of analytical approaches: 1) the probability-based and 2) the discrete time Markov chain-based. Closed-form expressions are derived for both the throughput and the delay under the perfect and imperfect sensing environments that are validated by simulation. We demonstrate that the activity of PUs, the transmission reliability of the CU, and the sensing environment have a significant impact on both the throughput and the delay of the CR system

    Advances in Multi-User Scheduling and Turbo Equalization for Wireless MIMO Systems

    Get PDF
    Nach einer Einleitung behandelt Teil 2 Mehrbenutzer-Scheduling fĂŒr die AbwĂ€rtsstrecke von drahtlosen MIMO Systemen mit einer Sendestation und kanaladaptivem precoding: In jeder Zeit- oder Frequenzressource kann eine andere Nutzergruppe gleichzeitig bedient werden, rĂ€umlich getrennt durch unterschiedliche Antennengewichte. Nutzer mit korrelierten KanĂ€len sollten nicht gleichzeitig bedient werden, da dies die rĂ€umliche Trennbarkeit erschwert. Die Summenrate einer Nutzermenge hĂ€ngt von den Antennengewichten ab, die wiederum von der Nutzerauswahl abhĂ€ngen. Zur Entkopplung des Problems schlĂ€gt diese Arbeit Metriken vor basierend auf einer geschĂ€tzten Rate mit ZF precoding. Diese lĂ€sst sich mit Hilfe von wiederholten orthogonalen Projektionen abschĂ€tzen, wodurch die Berechnung von Antennengewichten beim Scheduling entfĂ€llt. Die RatenschĂ€tzung kann basierend auf momentanen Kanalmessungen oder auf gemittelter Kanalkenntnis berechnet werden und es können Datenraten- und Fairness-Kriterien berĂŒcksichtig werden. Effiziente Suchalgorithmen werden vorgestellt, die die gesamte Systembandbreite auf einmal bearbeiten können und zur KomplexitĂ€tsreduktion die Lösung in Zeit- und Frequenz nachfĂŒhren können. Teil 3 zeigt wie mehrere Sendestationen koordiniertes Scheduling und kooperative Signalverarbeitung einsetzen können. Mittels orthogonalen Projektionen ist es möglich, Inter-Site Interferenz zu schĂ€tzen, ohne Antennengewichte berechnen zu mĂŒssen. Durch ein Konzept virtueller Nutzer kann der obige Scheduling-Ansatz auf mehrere Sendestationen und sogar Relays mit SDMA erweitert werden. Auf den benötigten Signalisierungsaufwand wird kurz eingegangen und eine Methode zur SchĂ€tzung der Summenrate eines Systems ohne Koordination besprochen. Teil4 entwickelt Optimierungen fĂŒr Turbo Entzerrer. Diese Nutzen Signalkorrelation als Quelle von Redundanz. Trotzdem kann eine Kombination mit MIMO precoding sinnvoll sein, da bei Annahme realistischer Fehler in der Kanalkenntnis am Sender keine optimale InterferenzunterdrĂŒckung möglich ist. Mit Hilfe von EXIT Charts wird eine neuartige Methode zur adaptiven Nutzung von a-priori-Information zwischen Iterationen entwickelt, die die Konvergenz verbessert. Dabei wird gezeigt, wie man semi-blinde KanalschĂ€tzung im EXIT chart berĂŒcksichtigen kann. In Computersimulationen werden alle Verfahren basierend auf 4G-Systemparametern ĂŒberprĂŒft.After an introduction, part 2 of this thesis deals with downlink multi-user scheduling for wireless MIMO systems with one transmitting station performing channel adaptive precoding:Different user subsets can be served in each time or frequency resource by separating them in space with different antenna weight vectors. Users with correlated channel matrices should not be served jointly since correlation impairs the spatial separability.The resulting sum rate for each user subset depends on the precoding weights, which in turn depend on the user subset. This thesis manages to decouple this problem by proposing a scheduling metric based on the rate with ZF precoding such as BD, written with the help of orthogonal projection matrices. It allows estimating rates without computing any antenna weights by using a repeated projection approximation.This rate estimate allows considering user rate requirements and fairness criteria and can work with either instantaneous or long term averaged channel knowledge.Search algorithms are presented to efficiently solve user grouping or selection problems jointly for the entire system bandwidth while being able to track the solution in time and frequency for complexity reduction. Part 3 shows how multiple transmitting stations can benefit from cooperative scheduling or joint signal processing. An orthogonal projection based estimate of the inter-site interference power, again without computing any antenna weights, and a virtual user concept extends the scheduling approach to cooperative base stations and finally included SDMA half-duplex relays in the scheduling.Signalling overhead is discussed and a method to estimate the sum rate without coordination. Part 4 presents optimizations for Turbo Equalizers. There, correlation between user signals can be exploited as a source of redundancy. Nevertheless a combination with transmit precoding which aims at reducing correlation can be beneficial when the channel knowledge at the transmitter contains a realistic error, leading to increased correlation. A novel method for adaptive re-use of a-priori information between is developed to increase convergence by tracking the iterations online with EXIT charts.A method is proposed to model semi-blind channel estimation updates in an EXIT chart. Computer simulations with 4G system parameters illustrate the methods using realistic channel models.Im Buchhandel erhĂ€ltlich: Advances in Multi-User Scheduling and Turbo Equalization for Wireless MIMO Systems / Fuchs-Lautensack,Martin Ilmenau: ISLE, 2009,116 S. ISBN 978-3-938843-43-

    Coherent and Non-coherent Techniques for Cooperative Communications

    Get PDF
    Future wireless network may consist of a cluster of low-complexity battery-powered nodes or mobile stations (MS). Information is propagated from one location in the network to another by cooperation and relaying. Due to the channel fading or node failure, one or more relaying links could become unreliable during multiple-hop relaying. Inspired by conventional multiple-input multiple-output (MIMO) techniques exploiting multiple co-located transmit antennas to introduce temporal and spatial diversity, the error performance and robustness against channel fading of a multiple-hop cooperative network could be significantly improved by creating a virtual antenna array (VAA) with various distributed MIMO techniques. In this thesis, we concentrate on the low-complexity distributed MIMO designed for both coherent and non-coherent diversity signal reception at the destination node. Further improvement on the network throughput as well as spectral efficiency could be achieved by extending the concept of unidirectional relaying to bidirectional cooperative communication. Physical-layer network coding (PLNC) assisted distributed space-time block coding (STBC) scheme as well as non-coherent PLNC aided distributed differential STBC system are proposed. It is confirmed by the theoretical analysis that both approaches have the potential for offering full spatial diversity gain.    Furthermore, differential encoding and non-coherent detection techniques are generally associated with performance degradation due to the doubled noise variance. More importantly, conventional differential schemes suffer from the incapability of recovering the source information in time-varying channels owing to the assumption of static channel model used in the derivation of non-coherent detection algorithm. Several low-complexity solutions are proposed and studied in this thesis, which are able to compensate the performance loss caused by non-coherent detection and guarantee the reliable recovery of information in applications with high mobility. A substantial amount of iteration gain is achieved by combining the differential encoding with error-correction code and sufficient interleaving, which allows iterative possessing at the receiver
    • 

    corecore