1,454 research outputs found

    Machine learning techniques applied to multiband spectrum sensing in cognitive radios

    Get PDF
    This research received funding of the Mexican National Council of Science and Technology (CONACYT), Grant (no. 490180). Also, this work was supported by the Program for Professional Development Teacher (PRODEP).In this work, three specific machine learning techniques (neural networks, expectation maximization and k-means) are applied to a multiband spectrum sensing technique for cognitive radios. All of them have been used as a classifier using the approximation coefficients from a Multiresolution Analysis in order to detect presence of one or multiple primary users in a wideband spectrum. Methods were tested on simulated and real signals showing a good performance. The results presented of these three methods are effective options for detecting primary user transmission on the multiband spectrum. These methodologies work for 99% of cases under simulated signals of SNR higher than 0 dB and are feasible in the case of real signalsPeer ReviewedPostprint (published version

    Applications of Machine Learning in Spectrum Sensing for Cognitive Radios

    Get PDF
    Spectrum sensing is an essential component in cognitive radios. The machine learning (ML) approach is part of artificial intelligence which develops systems capable of learning and improving from experience. ML algorithms are promising techniques for spectrum sensing as a favored solution to tackle the limitations of conventional spectrum sensing techniques while improving detection performance. The supervised ML algorithms, support vector machine (SVM), k-nearest neighbor (kNN), decision tree (DT), and ensemble are applied to detect the existence of primary users (PUs) in the TV spectrum band. This is accomplished by building classifiers using the collected data for the TV spectrum over different locations in the city of Windsor, Ontario. Then, the dimensionality reduction technique named Principal Component Analysis (PCA) is incorporated to reduce the duration of training and testing of the model, as well as reduce the risk of overfitting. This is achieved by transforming the input data into a lower-dimensional representation, which is known as the principal components. The Ensemble classification-based approach is employed to enhance the classifier predictivity and performance. Furthermore, the performance of the Ensemble classification method is compared with SVM, kNN, and DT classifiers. Simulation results have shown that the highest performance is achieved by combining multiple classifiers, i.e., the Ensemble, therefore, the detection performance has significantly improved. Simulation results have shown the impact of employing PCA on lowering the duration of training while maintaining the performance

    Spatio-temporal spectrum sensing in cognitive radio networks using Beamformer-Aided SVM algorithms

    Get PDF
    This paper addresses the problem of spectrum sensing in multi-antenna cognitive radio system using support vector machine (SVM) algorithms. First, we formulated the spectrum sensing problem under multiple primary users scenarios as a multiple state signal detection problem. Next, we propose a novel, beamformer aided feature realization strategy for enhancing the capability of the SVM for signal classification under both single and multiple primary users conditions. Then, we investigate the error correcting output codes (ECOC) based multi-class SVM algorithms and provide a multiple independent model (MIM) alternative for solving the multiple state spectrum sensing problem. The performance of the proposed detectors is quantified in terms of probability of detection, probability of false alarm, receiver operating characteristics (ROC), area under ROC curves (AuC) and overall classification accuracy. Simulation results show that the proposed detectors are robust to both temporal and joint spatio-temporal detection of spectrum holes in cognitive radio networks

    機械学習を用いたコグニティブ無線における変調方式識別に関する研究

    Get PDF
    The current spectrum allocation cannot satisfy the demand for future wireless communications, which prompts extensive studies in search of feasible solutions for the spectrum scarcity. The burden in terms of the spectral efficiency on the radio frequency terminal is intended to be small by cognitive radio (CR) systems that prefer low power transmission, changeable carrier frequencies, and diverse modulation schemes. However, the recent surge in the application of the CR has been accompanied by an indispensable component: the spectrum sensing, to avoid interference towards the primary user. This requirement leads to a complex strategy for sensing and transmission and an increased demand for signal processing at the secondary user. However, the performance of the spectrum sensing can be extended by a robust modulation classification (MC) scheme to distinguish between a primary user and a secondary user along with the interference identification. For instance, the underlying paradigm that enables a concurrent transmission of the primary and secondary links may need a precise measure of the interference that the secondary users cause to the primary users. An adjustment to the transmission power should be made, if there is a change in the modulation of the primary users, implying a noise oor excess at the primary user location; else, the primary user will be subject to interference and a collision may occur.Alternatively, the interweave paradigm that progresses the spectrum efficiency by reusing the allocated spectrum over a temporary space, requires a classification of the intercepted signal into primary and secondary systems. Moreover, a distinction between noise and interference can be accomplished by modulation classification, if spectrum sensing is impossible. Therefore, modulation classification has been a fruitful area of study for over three decades.In this thesis, the modulation classification algorithms using machine learning are investigated while new methods are proposed. Firstly, a supervised machine learning based modulation classification algorithm is proposed. The higher-order cumulants are selected as features, due to its robustness to noise. Stacked denoising autoencoders,which is an extended edition of the neural network, is chosen as the classifier. On one hand stacked pre-train overcomes the shortcoming of local optimization, on the other, denoising function further enhances the anti-noise performance. The performance of this method is compared with the conventional methods in terms of the classification accuracy and execution speed. Secondly, an unsupervised machine learning based modulation classification algorithm is proposed.The features from time-frequency distribution are extracted. Density-based spatial clustering of applications with noise (DBSCAN) is used as the classifier because it is impossible to decide the number of clusters in advance. The simulation reveals that this method has higher classification accuracy than the conventional methods. Moreover, the training phase is unnecessary for this method. Therefore, it has higher workability then supervised method. Finally, the advantages and dis-advantages of them are summarized.For the future work, algorithm optimization is still a challenging task, because the computation capability of hardware is limited. On one hand, for the supervised machine learning, GPU computation is a potential solution for supervised machine learning, to reduce the execution cost. Altering the modulation pool, the network structure has to be redesigned as well. On the other hand, for the unsupervised machine learning, that shifting the symbols to carrier frequency consumes extra computing resources.電気通信大学201
    corecore