2,307 research outputs found

    Performance analysis of spatial laser speckle contrast implementations

    Get PDF
    This work presents an analysis of the performances for four different implementations used to compute laser speckle contrast on images. Laser speckle contrast is a widely used imaging technique for biomedical applications. These implementations were tested using synthetic laser speckle patters with different resolutions, speckle sizes, and contrasts. From the applied methods, three implementations are already known in the literature. A new alternative is proposed herein, which relies on two-dimensional convolutions, in order to improve the image processing time without compromising the contrast assessment. The proposed implementation achieves a processing time two orders of magnitude lower than the analytical evaluation. The goal of this technical manuscript is to help the developers and researchers in computing laser speckle contrast images

    Imaging With Nature: Compressive Imaging Using a Multiply Scattering Medium

    Get PDF
    The recent theory of compressive sensing leverages upon the structure of signals to acquire them with much fewer measurements than was previously thought necessary, and certainly well below the traditional Nyquist-Shannon sampling rate. However, most implementations developed to take advantage of this framework revolve around controlling the measurements with carefully engineered material or acquisition sequences. Instead, we use the natural randomness of wave propagation through multiply scattering media as an optimal and instantaneous compressive imaging mechanism. Waves reflected from an object are detected after propagation through a well-characterized complex medium. Each local measurement thus contains global information about the object, yielding a purely analog compressive sensing method. We experimentally demonstrate the effectiveness of the proposed approach for optical imaging by using a 300-micrometer thick layer of white paint as the compressive imaging device. Scattering media are thus promising candidates for designing efficient and compact compressive imagers.Comment: 17 pages, 8 figure

    Molecular Contrast Optical Coherence Tomography: A Review

    Get PDF
    This article reviews the current state of research on the use of molecular contrast agents in optical coherence tomography (OCT) imaging techniques. After a brief discussion of the basic principle of OCT and the importance of incorporating molecular contrast agent usage into this imaging modality, we shall present an overview of the different molecular contrast OCT (MCOCT) methods that have been developed thus far. We will then discuss several important practical issues that define the possible range of contrast agent choice, the design criteria for engineered molecular contrast agent and the implementability of a given MCOCT method for clinical or biological applications. We will conclude by outlining a few areas of pursuit that deserve a greater degree of research and development

    SLM-based Digital Adaptive Coronagraphy: Current Status and Capabilities

    Full text link
    Active coronagraphy is deemed to play a key role for the next generation of high-contrast instruments, notably in order to deal with large segmented mirrors that might exhibit time-dependent pupil merit function, caused by missing or defective segments. To this purpose, we recently introduced a new technological framework called digital adaptive coronagraphy (DAC), making use of liquid-crystal spatial light modulators (SLMs) display panels operating as active focal-plane phase mask coronagraphs. Here, we first review the latest contrast performance, measured in laboratory conditions with monochromatic visible light, and describe a few potential pathways to improve SLM coronagraphic nulling in the future. We then unveil a few unique capabilities of SLM-based DAC that were recently, or are currently in the process of being, demonstrated in our laboratory, including NCPA wavefront sensing, aperture-matched adaptive phase masks, coronagraphic nulling of multiple star systems, and coherent differential imaging (CDI).Comment: 14 pages, 9 figures, to appear in Proceedings of the SPIE, paper 10706-9

    Better 3D Inspection with Structured Illumination Part I: Signal Formation and Precision

    Full text link
    For quality control in the factory, 3D-metrology faces increasing demands for high precision and for more space-bandwidth-speed-product SBSP (number of 3D-points/sec). As a potential solution, we will discuss Structured-Illumination Microscopy (SIM). We distinguish optically smooth and rough surfaces and develop a theoretical model of the signal formation for both surface species. This model is exploited to investigate the physical limits of the precision and to give rules to optimize the sensor parameters for best precision or high speed. This knowledge can profitably be combined with fast scanning strategies, to maximize the SBSP, which will be discussed in paper part II.Comment: 7 pages, 5 figures, submitted to Applied Optics on April 17, 201

    A Demonstration of Wavefront Sensing and Mirror Phasing from the Image Domain

    Full text link
    In astronomy and microscopy, distortions in the wavefront affect the dynamic range of a high contrast imaging system. These aberrations are either imposed by a turbulent medium such as the atmosphere, by static or thermal aberrations in the optical path, or by imperfectly phased subapertures in a segmented mirror. Active and adaptive optics (AO), consisting of a wavefront sensor and a deformable mirror, are employed to address this problem. Nevertheless, the non-common-path between the wavefront sensor and the science camera leads to persistent quasi-static speckles that are difficult to calibrate and which impose a floor on the image contrast. In this paper we present the first experimental demonstration of a novel wavefront sensor requiring only a minor asymmetric obscuration of the pupil, using the science camera itself to detect high order wavefront errors from the speckle pattern produced. We apply this to correct errors imposed on a deformable microelectromechanical (MEMS) segmented mirror in a closed loop, restoring a high quality point spread function (PSF) and residual wavefront errors of order 10\sim 10 nm using 1600 nm light, from a starting point of 300\sim 300 nm in piston and 0.3\sim 0.3 mrad in tip-tilt. We recommend this as a method for measuring the non-common-path error in AO-equipped ground based telescopes, as well as as an approach to phasing difficult segmented mirrors such as on the \emph{James Webb Space Telescope} primary and as a future direction for extreme adaptive optics.Comment: 9 pages, 6 figure

    SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography

    Get PDF
    Synthetic aperture radar is a well-known technique for improving resolution in radio imaging. Extending these synthetic aperture techniques to the visible light domain is not straightforward because optical receivers cannot measure phase information. We propose to use macroscopic Fourier ptychography (FP) as a practical means of creating a synthetic aperture for visible imaging to achieve subdiffraction-limited resolution. We demonstrate the first working prototype for macroscopic FP in a reflection imaging geometry that is capable of imaging optically rough objects. In addition, a novel image space denoising regularization is introduced during phase retrieval to reduce the effects of speckle and improve perceptual quality of the recovered high-resolution image. Our approach is validated experimentally where the resolution of various diffuse objects is improved sixfold

    Interferometric speckle visibility spectroscopy (ISVS) for human cerebral blood flow monitoring

    Get PDF
    Infrared light scattering methods have been developed and employed to non-invasively monitor human cerebral blood flow (CBF). However, the number of reflected photons that interact with the brain is low when detecting blood flow in deep tissue. To tackle this photon-starved problem, we present and demonstrate the idea of interferometric speckle visibility spectroscopy (ISVS). In ISVS, an interferometric detection scheme is used to boost the weak signal light. The blood flow dynamics are inferred from the speckle statistics of a single frame speckle pattern. We experimentally demonstrated the improvement of measurement fidelity by introducing interferometric detection when the signal photon number is insufficient. We apply the ISVS system to monitor the human CBF in situations where the light intensity is \sim100-fold less than that in common diffuse correlation spectroscopy (DCS) implementations. Due to the large number of pixels (2×105\sim 2\times 10^5) used to capture light in the ISVS system, we are able to collect a similar number of photons within one exposure time as in normal DCS implementations. Our system operates at a sampling rate of 100 Hz. At the exposure time of 2 ms, the average signal photon electron number is \sim0.95 count/pixel, yielding a single pixel interferometric measurement signal-to-noise ratio (SNR) of \sim0.97. The total 2×105\sim 2\times 10^5 pixels provide an expected overall SNR of 436. We successfully demonstrate that the ISVS system is able to monitor the human brain pulsatile blood flow, as well as the blood flow change when a human subject is doing a breath holding task
    corecore