97 research outputs found

    Performance of the sleep-mode mechanism of the new IEEE 802.16m proposal for correlated downlink traffic

    Get PDF
    There is a considerable interest nowadays in making wireless telecommunication more energy-efficient. The sleep-mode mechanism in WiMAX (IEEE 802.16e) is one of such energy saving measures. Recently, Samsung proposed some modifications on the sleep-mode mechanism, scheduled to appear in the forthcoming IEEE 802.16m standard, aimed at minimizing the signaling overhead. In this work, we present a performance analysis of this proposal and clarify the differences with the standard mechanism included in IEEE 802.16e. We also propose some special algorithms aimed at reducing the computational complexity of the analysis

    On the effect of combining cooperative communication with sleep mode

    Get PDF
    Cooperation is crucial in (next-generation) wireless networks as it can greatly attribute to ensuring connectivity, reliability, performance, ... Relaying looks promising in a wide variety of network types (cellular, ad-hoc on-demand), each using a certain protocol. Energy efficiency constitutes another key aspect of such networks, as battery power is often limited, and is typically achieved by sleep mode operation. As the range of applications is very broad, rather than modelling one of the protocols in detail, we construct a high-level model capturing the two essential characteristics of cooperation and energy efficiency: relaying and sleep mode, and study their interaction. The used analytical approach allows for accurate performance evaluation and enables us to unveil less trivial trade-offs and to formulate rules-of-thumb applicable across all potential scenarios

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    A Technical and Market study for WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is a broadband wireless technology based on IEEE 802.16-2004 and IEEE 802.16e-2005. This thesis is a study of WiMAX technology and market. The background of WiMAX development is introduced and opportunities and challenges for WiMAX are analyzed in the beginning. Then the thesis focuses on an overview of WiMAX technology, which addresses the physical layer, MAC layer and WiMAX network architecture. The deployment status is investigated in the fourth chapter. Both product development situation and market status are discussed in this section. In the last chapter, the future development trend of WiMAX is addressed

    Bit error rate estimation in WiMAX communications at vehicular speeds using Nakagami-m fading model

    Get PDF
    The wireless communication industry has experienced a rapid technological evolution from its basic first generation (1G) wireless systems to the latest fourth generation (4G) wireless broadband systems. Wireless broadband systems are becoming increasingly popular with consumers and the technological strength of 4G has played a major role behind the success of wireless broadband systems. The IEEE 802.16m standard of the Worldwide Interoperability for Microwave Access (WiMAX) has been accepted as a 4G standard by the Institute of Electrical and Electronics Engineers in 2011. The IEEE 802.16m is fully optimised for wireless communications in fixed environments and can deliver very high throughput and excellent quality of service. In mobile communication environments however, WiMAX consumers experience a graceful degradation of service as a direct function of vehicular speeds. At high vehicular speeds, the throughput drops in WiMAX systems and unless proactive measures such as forward error control and packet size optimisation are adopted and properly adjusted, many applications cannot be facilitated at high vehicular speeds in WiMAX communications. For any proactive measure, bit error rate estimation as a function of vehicular speed, serves as a useful tool. In this thesis, we present an analytical model for bit error rate estimation in WiMAX communications using the Nakagami-m fading model. We also show, through an analysis of the data collected from a practical WiMAX system, that the Nakagami-m model can be made adaptive as a function of speed, to represent fading in fixed environments as well as mobile environments

    Performance Analysis of the Sleep Mode in WiMAX 2 Networks with Multimedia Application

    Get PDF
    We consider the sleep mode with multimedia application in WiMAX 2 networks, where the real-time traffic includes the real-time and the best-effort traffic mixed. We present a queueing model with multiple heterogeneous vacations to characterize the system probability behavior in the networks with multimedia application. Taking into account the correlation of the real-time traffic, we assume the arrival process as a discrete-time Markovian arrival process (D-MAP) and analyze this queueing model by using the method of an embedded Markov chain. Then, we present the probability distribution for the number of data packets. Accordingly, we give the formulas for the performance measures in terms of the average response time of data packets, the energy saving ratio, and the standard deviation of the number of data packets. We also develop a cost function to determine the optimal length of the sleep cycle in order to maximize the energy saving ratio while satisfying the Quality of Service (QoS) constraint on the average response time of data packets. Finally, we provide numerical results to investigate the influence of the system parameters on the system performance

    An Effectively Deploying of Relay Stations (Rs) In WIMAX Networks

    Get PDF
    The relay stations are widely used in major wireless technologies i.e. WiMAX (Worldwide Interoperability for Microwave Access) and LTE (Long term evolution) which provides cost efficient service to the operators and end subscribers. It is quite challenging to provide guaranteed Quality of Service (QoS) in WiMAX networks in cost efficient way. The primary aim is to reduce the total deployment cost in relay stations and use the existing spectral resources as effectively as possible to increase throughput for end users with high demanding applications i.e. voice and video. Keeping in mind the cost and the increasingly more demanding applications with growing large number of users, primary consideration of this paper is to increase throughput in a cost effective way. This paper shows the study of cell coverage and usage capacity by varying distances between a relay node and a base station in a WiMAX cell. For the Simulation purpose we have employed OPNET (Optimized Network Engineering Tool) MODELER 14.5. The performance of network is measured with respect to the QoS parameters like Throughput

    On analyzing the intra-frame power saving potentials of the IEEE 802.16e downlink vertical mapping

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is generally considered as a competitive candidate networking technology for the realization of the 4G vision. Among the key factors towards its successful and widespread deployment are the effective support of mobility and the provision of mechanisms for enabling service access at a high quality level in an efficient and cost-effective manner. Nonetheless, this effort should take into account and adequately address strict and severe energy limitations that the mobile devices are currently facing. Power saving constitutes an issue of vital importance, as mobile terminals continue to incorporate more and more functionalities and energy-hungry features in order to support the ever increasing user requirements and demands. The standard employs variations of power saving classes in a frame-to-frame basis, while recent power saving mechanisms proposed in related research literature limit their activity in whole frames, neglecting, thus, the intra-frame power saving capabilities. In this work, the intra-frame energy conservation potentials of the mobile WiMAX network are studied and a novel analytical approach is provided, focusing on the downlink direction where the bandwidth allocation involves idle intervals and dynamic inactivity periods. Specifically, we endeavour to accurately analyse the potential energy conservation capabilities in an intra-frame point of view, applying the well-known simple packing algorithm to distribute the available bandwidth to the various subscribers. Our analytical findings are thoroughly cross-validated via simulation, providing clear insights into the intra-frame energy reduction capabilities
    corecore