2,209 research outputs found

    Voltage Stability Analysis of Grid-Connected Wind Farms with FACTS: Static and Dynamic Analysis

    Get PDF
    Recently, analysis of some major blackouts and failures of power system shows that voltage instability problem has been one of the main reasons of these disturbances and networks collapse. In this paper, a systematic approach to voltage stability analysis using various techniques for the IEEE 14-bus case study, is presented. Static analysis is used to analyze the voltage stability of the system under study, whilst the dynamic analysis is used to evaluate the performance of compensators. The static techniques used are Power Flow, V–P curve analysis, and Q–V modal analysis. In this study, Flexible Alternating Current Transmission system (FACTS) devices- namely, Static Synchronous Compensators (STATCOMs) and Static Var Compensators (SVCs) - are used as reactive power compensators, taking into account maintaining the violated voltage magnitudes of the weak buses within the acceptable limits defined in ANSI C84.1. Simulation results validate that both the STATCOMs and the SVCs can be effectively used to enhance the static voltage stability and increasing network loadability margin. Additionally, based on the dynamic analysis results, it has been shown that STATCOMs have superior performance, in dynamic voltage stability enhancement, compared to SVCs

    LC compensators based on transmission loss minimization for nonlinear loads

    Get PDF
    This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. Copyright @ 2004 IEEEThis paper presents a method employing the penalty function search algorithm to determine the LC compensator value for the optimal power factor correction in nonsinusoidal systems. The objective of the proposed method is to minimize the transmission loss while the power factor and efficiency are taken as constraints and utilized in order to solve the multiobjective optimization problem by transforming it into a single objective one. Examples show that the load nonlinearity can have a significant impact on optimal compensator sizes

    Practical considerations regarding power factor for nonlinear loads

    Get PDF
    This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. Copyright @ 2004 IEEEThe choice of LC compensator may be constrained by the availability of manufacturers units. To account for this, the capacitor values are chosen from among standard values and for each value the transmission losses is minimized, or power factor is maximized, or transmission efficiency is maximized. The global minimum or maximum is obtained by scanning all local minims or maxims. The performance of the obtained compensator is discussed by means of numerical examples

    LC compensators for power factor correction of nonlinear loads

    Get PDF
    This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. Copyright @ 2004 IEEEA method is presented for finding the optimum fixed LC compensator for power factor correction of nonlinear loads where both source voltage and load current harmonics are present. The LC combination is selected because pure capacitive capacitors alone would not sufficiently correct the power factor. Optimization minimizes the transmission loss, maximizes the power factor, and maximizes the efficiency. The performance of the obtained compensator is discussed by means of numerical examples

    Control and analysis of a unified power flow controller

    Get PDF
    This paper presents a control scheme and comprehensive analysis for a unified power flow controller (UPFC) on the basis of theory, computer simulation and experiment. This developed theoretical analysis reveals that a conventional power feedback control scheme makes the UPFC induce power fluctuation in transient states. The conventional control scheme cannot attenuate the power fluctuation, and so the time constant of damping is independent of active and reactive power feedback gains integrated in its control circuit. This paper proposes an advanced control scheme which has the function of successfully damping out the power fluctuation. A UPFC rated at 10 kVA is designed and constructed, which is a combination of a series device consisting of three single-phase pulsewidth modulation (PWM) converters and a shunt device consisting of a three-phase diode rectifier. Although the dynamics of the shunt device are not included, it is possible to confirm and demonstrate the performance of the series device. Experimental results agree well with both analytical and simulated results and show viability and effectiveness of the proposed control scheme </p

    The most economical power factor correction according to tariff structures in Egypt

    Get PDF
    This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. Copyright @ 2005 IEEEA method of applying power-factor (PF) correction capacitors is discussed based on net savings maximization according to Egyptian's Tariff. Test results from examples taken from existing publications are presented. The purpose of this application technique is to utilize existing electrical distribution equipment in the installation of very large values of PF correction capacitors. It is concluded that LC compensators can be installed, thus providing maximum benefits from penalty elimination, system losses reduction, release of system transformer capacity, and minimum switching transients. Paybacks of less than one year can be expected

    Voltage harmonic reduction for randomly time-varying source characteristics and voltage harmonics

    Get PDF
    This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. Copyright @ 2006 IEEEPotential applications of probabilistic modeling of current and voltage harmonics concern many aspects of power system engineering as accurate prediction of power system harmonic behavior provides important information to utility companies and equipment designers. In this paper, a method of reducing the expected value of the total voltage harmonic distortion for a specified range of source impedance values at different buses by using LC compensators, where it is desired to maintain a given power factor at a specified value, is presented. The criterion is based on mean value estimation of source and load characteristics, which are enabled by sampling measurements performed on the examined electrical plant as well as statistical analysis

    A Control Method for Static VAR Compensator Based On Modular Multilevel Inverter

    Get PDF
    Multilevel inverters are promised to provide a better performance in high power applications such as static VAR compensators. The proposed modular inverter has advantages compared to the conventional technologies. A control system of static VAR compensator using new modular multilevel inverter is proposed in this paper. Modeling and dynamic performance of static VAR compensator based on the proposed multilevel inverter are described in this paper. The inverter switching devices are switched at the fundamental output frequency. How to control the dc capacitor voltage is described. Several simulated results are included to verify the proposed concept. Keywords: Multilevel, inverter, STATCO
    corecore