38,834 research outputs found

    Alternating-Direction Line-Relaxation Methods on Multicomputers

    Get PDF
    We study the multicom.puter performance of a three-dimensional Navier–Stokes solver based on alternating-direction line-relaxation methods. We compare several multicomputer implementations, each of which combines a particular line-relaxation method and a particular distributed block-tridiagonal solver. In our experiments, the problem size was determined by resolution requirements of the application. As a result, the granularity of the computations of our study is finer than is customary in the performance analysis of concurrent block-tridiagonal solvers. Our best results were obtained with a modified half-Gauss–Seidel line-relaxation method implemented by means of a new iterative block-tridiagonal solver that is developed here. Most computations were performed on the Intel Touchstone Delta, but we also used the Intel Paragon XP/S, the Parsytec SC-256, and the Fujitsu S-600 for comparison

    A parallel Heap-Cell Method for Eikonal equations

    Full text link
    Numerous applications of Eikonal equations prompted the development of many efficient numerical algorithms. The Heap-Cell Method (HCM) is a recent serial two-scale technique that has been shown to have advantages over other serial state-of-the-art solvers for a wide range of problems. This paper presents a parallelization of HCM for a shared memory architecture. The numerical experiments in R3R^3 show that the parallel HCM exhibits good algorithmic behavior and scales well, resulting in a very fast and practical solver. We further explore the influence on performance and scaling of data precision, early termination criteria, and the hardware architecture. A shorter version of this manuscript (omitting these more detailed tests) has been submitted to SIAM Journal on Scientific Computing in 2012.Comment: (a minor update to address the reviewers' comments) 31 pages; 15 figures; this is an expanded version of a paper accepted by SIAM Journal on Scientific Computin

    A Parametric Non-Convex Decomposition Algorithm for Real-Time and Distributed NMPC

    Get PDF
    A novel decomposition scheme to solve parametric non-convex programs as they arise in Nonlinear Model Predictive Control (NMPC) is presented. It consists of a fixed number of alternating proximal gradient steps and a dual update per time step. Hence, the proposed approach is attractive in a real-time distributed context. Assuming that the Nonlinear Program (NLP) is semi-algebraic and that its critical points are strongly regular, contraction of the sequence of primal-dual iterates is proven, implying stability of the sub-optimality error, under some mild assumptions. Moreover, it is shown that the performance of the optimality-tracking scheme can be enhanced via a continuation technique. The efficacy of the proposed decomposition method is demonstrated by solving a centralised NMPC problem to control a DC motor and a distributed NMPC program for collaborative tracking of unicycles, both within a real-time framework. Furthermore, an analysis of the sub-optimality error as a function of the sampling period is proposed given a fixed computational power.Comment: 16 pages, 9 figure
    • …
    corecore