355 research outputs found

    Deflection Routing Strategies for Optical Burst Switching Networks: Contemporary Affirmation of the Recent Literature

    Get PDF
    A promising option to raising busty interchange in system communication could be Optical Burst Switched (OBS) networks among scalable and support routing effective. The routing schemes with disputation resolution got much interest, because the OBS network is buffer less in character. Because the deflection steering can use limited optical buffering or actually no buffering thus the choice or deflection routing techniques can be critical. Within this paper we investigate the affirmation of the current literature on alternate (deflection) routing strategies accessible for OBS networks

    New contention resolution techniques for optical burst switching

    Get PDF
    Optical burst switching (OBS) is a technology positioned between wavelength routing and optical packet switching that does not require optical buffering or packet-level parsing, and it is more efficient than circuit switching when the sustained traffic volume does not consume a full wavelength. However, several critical issues still need to be solved such as contention resolution without optical buffering which is a key determinant of packet-loss with a significant impact on network performance. Deflection routing is an approach for resolving contention by routing a contending packet to an output port other than the intended output port. In OBS networks, when contention between two bursts cannot be resolved through deflection routing, one of the bursts will be dropped. However, this scheme doesn’t take advantage of all the available resources in resolving contentions. Due to this, the performance of existing deflection routing scheme is not satisfactory. In this thesis, we propose and evaluate three new strategies which aim at resolving contention. We propose a new approach called Backtrack on Deflection Failure, which provides a second chance to blocked bursts when deflection failure occurs. The bursts in this scheme, when blocked, will get an opportunity to backtrack to the previous node and may get routed through any deflection route available at the previous node. Two variants are proposed for handling the backtracking delay involved in this scheme namely: (a) Increase in Initial Offset and (b) Open-Loop Reservation. Furthermore, we propose a third scheme called Bidirectional Reservation on Burst Drop in which bandwidth reservation is made in both the forward and the backward directions simultaneously. This scheme comes into effect only when control bursts get dropped due to bandwidth unavailability. The retransmitted control bursts will have larger offset value and because of this, they will have lower blocking probability than the original bursts. The performance of our schemes and of those proposed in the literature is studied through simulation. The parameters considered in evaluating these schemes are blocking probability, average throughput, and overall link utilization. The results obtained show that our schemes perform significantly better than their standard counterparts

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    Transport Control Protocol (TCP) over Optical Burst Switched Networks

    Get PDF
    Transport Control Protocol (TCP) is the dominant protocol in modern communication networks, in which the issues of reliability, flow, and congestion control must be handled efficiently. This thesis studies the impact of the next-generation bufferless optical burst-switched (OBS) networks on the performance of TCP congestion-control implementations (i.e., dropping-based, explicit-notification-based, and delay-based). The burst contention phenomenon caused by the buffer-less nature of OBS occurs randomly and has a negative impact on dropping-based TCP since it causes a false indication of network congestion that leads to improper reaction on a burst drop event. In this thesis we study the impact of these random burst losses on dropping-based TCP throughput. We introduce a novel congestion control scheme for TCP over OBS networks, called Statistical Additive Increase Multiplicative Decrease (SAIMD). SAIMD maintains and analyzes a number of previous round trip times (RTTs) at the TCP senders in order to identify the confidence with which a packet-loss event is due to network congestion. The confidence is derived by positioning short-term RTT in the spectrum of long-term historical RTTs. The derived confidence corresponding to the packet loss is then taken in to account by the policy developed for TCP congestion-window adjustment. For explicit-notification TCP, we propose a new TCP implementation over OBS networks, called TCP with Explicit Burst Loss Contention Notification (TCP-BCL). We examine the throughput performance of a number of representative TCP implementations over OBS networks, and analyze the TCP performance degradation due to the misinterpretation of timeout and packet-loss events. We also demonstrate that the proposed TCP-BCL scheme can counter the negative effect of OBS burst losses and is superior to conventional TCP architectures in OBS networks. For delay-based TCP, we observe that this type of TCP implementation cannot detect network congestion when deployed over typical OBS networks since RTT fluctuations are minor. Also, delay-based TCP can suffer from falsely detecting network congestion when the underlying OBS network provides burst retransmission and/or deflection. Due to the fact that burst retransmission and deflection schemes introduce additional delays for bursts that are retransmitted or deflected, TCP cannot determine whether this sudden delay is due to network congestion or simply to burst recovery at the OBS layer. In this thesis we study the behaviour of delay-based TCP Vegas over OBS networks, and propose a version of threshold-based TCP Vegas that is suitable for the characteristics of OBS networks. The threshold-based TCP Vegas is able to distinguish increases in packet delay due to network congestion from burst contention at low traffic loads. The evolution of OBS technology is highly coupled with its ability to support upper-layer applications. Without fully understanding the burst transmission behaviour and the associated impact on the TCP congestion-control mechanism, it will be difficult to exploit the advantages of OBS networks fully

    Contribution to Proving Absolute QoS in OBS Networks

    Get PDF
    This Final Master Project introduces a new strategy to provide QoS in IP/OBS networks, using routing with prioritization based on statistics, named RPBS. A new method is provided and subsequently validated. This proposal uses the feedback scheme in optical networks to provide statistical knowledge with the objective of finding a suitable route to reach each destination from a specific source node, with more chance of success. This yields a twofold outcome. First, the losses can be reduced in a big number due to statistics. Second, the delays are also reduced compared with other methods based on feedback scheme. These two improvements allow better QoS provision, supporting class differentiation and more efficient resources utilization. The benefits of this proposal are quantified and further compared against existent alternatives by simulations

    Performance evaluation of TCP over software-defined optical burst-switched data centre network

    Get PDF
    In this paper, we consider the performance of TCP when used in data centre networks (DCNs) featuring optical burst switching (OBS) using two-way reservation. The two-way reservation is not suitable in wide-area OBS networks due to high bandwidth-delay product (BDP). The burst loss using traditional methods of one-way reservation can be mistakenly interpreted by the TCP layer as congestion instead of contention in OBS network, leading to serious degradation of the TCP performance. The reduced BDP in DCNs allows the use of two-way reservation that results in zero burst loss. The modelled architecture features fast optical switches in a single hop topology. We apply different workloads with various burst assembly parameters to evaluate the performance of TCP. Our results show significant improvement in TCP performance as compared to traditional methods of OBS as well as to a conventional electronic packet switching DCN

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs
    corecore