35 research outputs found

    Display probability of symbol errors for MQAM on Rician fading channel based on MGF method

    Get PDF
    We present a new method for calculating the probability of error per symbol (Symbol Error Probability, SEP) of M-ary Quadrature Amplitude Modulation (MQAM) over a slow, flat, identically independently distributed Rician fading channels. Since fading is one of the major constraints in wireless communications, the diversity modulation technique is used for the efficient transfer of message signals. Exact analysis of error probability per symbol for MQAM, transmitted over Rician fading channels, is performed by N branches of diversity reception using maximum ratio of signal-to-noise power (maximal-ratio-combining, MRC), where the information in the channel on the receiver side is known. We also analyzed the performances of MQAM over Rician fading channels are here also analyzed. Approximate formula is used to represent SEP for MQAM transmitted over Gaussian channels. Boundary condition for the approximation is M≄4 and 0≀SNR≀30 dB

    Display probability of symbol errors for MQAM on Rician fading channel based on MGF method

    Get PDF
    We present a new method for calculating the probability of error per symbol (Symbol Error Probability, SEP) of M-ary Quadrature Amplitude Modulation (MQAM) over a slow, flat, identically independently distributed Rician fading channels. Since fading is one of the major constraints in wireless communications, the diversity modulation technique is used for the efficient transfer of message signals. Exact analysis of error probability per symbol for MQAM, transmitted over Rician fading channels, is performed by N branches of diversity reception using maximum ratio of signal-to-noise power (maximal-ratio-combining, MRC), where the information in the channel on the receiver side is known. We also analyzed the performances of MQAM over Rician fading channels are here also analyzed. Approximate formula is used to represent SEP for MQAM transmitted over Gaussian channels. Boundary condition for the approximation is M≄4 and 0≀SNR≀30 dB

    Performance of Fractionally Spread Multicarrier CDMA in AWGN as Well as Slow and Fast Nakagami-m Fading Channels

    No full text
    Abstract—In multicarrier code-division multiple-access (MCCDMA), the total system bandwidth is divided into a number of subbands, where each subband may use direct-sequence (DS) spreading and each subband signal is transmitted using a subcarrier frequency. In this paper, we divide the symbol duration into a number of fractional subsymbol durations also referred to here as fractions, in a manner analogous to subbands in MC-CDMA systems. In the proposed MC-CDMA scheme, the data streams are spread at both the symbol-fraction level and at the chip level by the transmitter, and hence the proposed scheme is referred to as the fractionally spread MC-CDMA arrangement, or FS MCCDMA. Furthermore, the FS MC-CDMA signal is additionally spread in the frequency (F)-domain using a spreading code with the aid of a number of subcarriers. In comparison to conventional MC-CDMA schemes, which are suitable for communications over frequency-selective fading channels, our study demonstrates that the proposed FS MC-CDMA is capable of efficiently exploiting both the frequency-selective and the time-selective characteristics of wireless channels. Index Terms—Broadband communications, code-division multiple access (CDMA), fractionally spreading, frequency-domain spreading, multicarrier modulation, Nakagami fading, timedomain spreading

    Design and performance evaluation of RAKE finger management schemes in the soft handover region

    Get PDF
    We propose and analyze new finger assignment/management techniques that are applicable for RAKE receivers when they operate in the soft handover region. Two main criteria are considered: minimum use of additional network resources and minimum call drops. For the schemes minimizing the use of network resources, basic principles are to use the network resources only if necessary while minimum call drop schemes rely on balancing or distributing the signal strength/paths among as many base stations as possible. The analyses of these schemes require us to consider joint microscopic/macroscopic diversity techniques which have seldom been considered before and as such, we tackle the statistics of several correlated generalized selection combining output signal-to-noise ratios in order to obtain closed-form expressions for the statistics of interest. To provide a general comprehensive framework for the assessment of the proposed schemes, we investigate not only the complexity in terms of the average number of required path estimations/comparisons, the average number of combined paths, and the soft handover overhead but also the error performance of the proposed schemes over independent and identically distributed fading channels. We also examine via computer simulations the effect of path unbalance/correlation as well as outdated/imperfect channel estimations. We show through numerical exam ples that the proposed schemes which are designed for the minimum use of network resources can save a certain amount of complexity load and soft handover overhead with a very slight performance loss compared to the conventional generalized selection combining-based diversity systems. For the minimum call drop schemes, by accurately quantifying the average error rate, we show that in comparison to the conventional schemes, the proposed distributed schemes offer the better error performance when there is a considerable chance of loosing the signals from one of the active base stations

    Adaptive Power Control for Single and Multiuser Opportunistic Systems

    Get PDF
    In this dissertation, adaptive power control for single and multiuser opportunistic systems is investigated. First, a new adaptive power-controlled diversity combining scheme for single user systems is proposed, upon which is extended to the multiusers case. In the multiuser case, we first propose two new threshold based parallel multiuser scheduling schemes without power control. The first scheme is named on-off based scheduling (OOBS) scheme and the second scheme is named switched based scheduling (SBS) scheme. We then propose and study the performance of thresholdbased power allocation algorithms for the SBS scheme. Finally, we introduce a unified analytical framework to determine the joint statistics of partial sums of ordered RVs with i.i.d. and then the impact of interference on the performance of parallel multiuser scheduling is investigated based on our unified analytical framework

    Calculating the probability of error per symbol on the basis of MGF method using Rician fading for MFSK

    Get PDF
    U ovom radu se analizira verovatnoća greơke po simbolu za M-arnu ne-koherentnu frekvencijsku modulaciju (M-ary Frequency Shift Keying, MFSK) signala u ambijentu frekvencijsko-neselektivnog sporog Rician fadinga i prijemnika zasnovanog na tehnici kombinovanja maksimalnog odnosa (Maximal Ratio Combining, MRC). Verovatnoće greơke po simbolu su dobijene na osnovu numeričkog izračunavanja baziranog na funkciji generisanja momenta (Moment Generating Function, MGF). Pretpostavlja se da je informacija na prijemnoj strani kanala poznata. Analiza verovatnoće greơke po simbolu za MFSK modulacionu tehniku izvrơena je za različite vrednosti Rician faktora K, diverziti reda N i nivoa modulacije M.In this paper is presented how to calculate the probability of error per symbol of M-ary non-coherent frequency modulation (M-ary Frequency Shift Keying, MFSK) over a slow, flat, identically independently distributed Rician fading channels. SEP is calculated by technique with maximal ratio combining diverzity, using the moment generating function. We assume that the information is known on the receiving side of the channel. Probabilities of error per symbol for the modulation technique are plotted for different values of Rician factor K, diverzity order N and modulation order M

    Calculating the probability of error per symbol on the basis of MGF method using Rician fading for MFSK

    Get PDF
    U ovom radu se analizira verovatnoća greơke po simbolu za M-arnu ne-koherentnu frekvencijsku modulaciju (M-ary Frequency Shift Keying, MFSK) signala u ambijentu frekvencijsko-neselektivnog sporog Rician fadinga i prijemnika zasnovanog na tehnici kombinovanja maksimalnog odnosa (Maximal Ratio Combining, MRC). Verovatnoće greơke po simbolu su dobijene na osnovu numeričkog izračunavanja baziranog na funkciji generisanja momenta (Moment Generating Function, MGF). Pretpostavlja se da je informacija na prijemnoj strani kanala poznata. Analiza verovatnoće greơke po simbolu za MFSK modulacionu tehniku izvrơena je za različite vrednosti Rician faktora K, diverziti reda N i nivoa modulacije M.In this paper is presented how to calculate the probability of error per symbol of M-ary non-coherent frequency modulation (M-ary Frequency Shift Keying, MFSK) over a slow, flat, identically independently distributed Rician fading channels. SEP is calculated by technique with maximal ratio combining diverzity, using the moment generating function. We assume that the information is known on the receiving side of the channel. Probabilities of error per symbol for the modulation technique are plotted for different values of Rician factor K, diverzity order N and modulation order M

    Bit error rate estimation in WiMAX communications at vehicular speeds using Nakagami-m fading model

    Get PDF
    The wireless communication industry has experienced a rapid technological evolution from its basic first generation (1G) wireless systems to the latest fourth generation (4G) wireless broadband systems. Wireless broadband systems are becoming increasingly popular with consumers and the technological strength of 4G has played a major role behind the success of wireless broadband systems. The IEEE 802.16m standard of the Worldwide Interoperability for Microwave Access (WiMAX) has been accepted as a 4G standard by the Institute of Electrical and Electronics Engineers in 2011. The IEEE 802.16m is fully optimised for wireless communications in fixed environments and can deliver very high throughput and excellent quality of service. In mobile communication environments however, WiMAX consumers experience a graceful degradation of service as a direct function of vehicular speeds. At high vehicular speeds, the throughput drops in WiMAX systems and unless proactive measures such as forward error control and packet size optimisation are adopted and properly adjusted, many applications cannot be facilitated at high vehicular speeds in WiMAX communications. For any proactive measure, bit error rate estimation as a function of vehicular speed, serves as a useful tool. In this thesis, we present an analytical model for bit error rate estimation in WiMAX communications using the Nakagami-m fading model. We also show, through an analysis of the data collected from a practical WiMAX system, that the Nakagami-m model can be made adaptive as a function of speed, to represent fading in fixed environments as well as mobile environments

    Distributed space-time coding including the golden code with application in cooperative networks

    Get PDF
    This thesis presents new methodologies to improve performance of wireless cooperative networks using the Golden Code. As a form of space-time coding, the Golden Code can achieve diversity-multiplexing tradeoff and the data rate can be twice that of the Alamouti code. In practice, however, asynchronism between relay nodes may reduce performance and channel quality can be degraded from certain antennas. Firstly, a simple offset transmission scheme, which employs full interference cancellation (FIC) and orthogonal frequency division multiplexing (OFDM), is enhanced through the use of four relay nodes and receiver processing to mitigate asynchronism. Then, the potential reduction in diversity gain due to the dependent channel matrix elements in the distributed Golden Code transmission, and the rate penalty of multihop transmission, are mitigated by relay selection based on two-way transmission. The Golden Code is also implemented in an asynchronous one-way relay network over frequency flat and selective channels, and a simple approach to overcome asynchronism is proposed. In one-way communication with computationally efficient sphere decoding, the maximum of the channel parameter means is shown to achieve the best performance for the relay selection through bit error rate simulations. Secondly, to reduce the cost of hardware when multiple antennas are available in a cooperative network, multi-antenna selection is exploited. In this context, maximum-sum transmit antenna selection is proposed. End-to-end signal-to-noise ratio (SNR) is calculated and outage probability analysis is performed when the links are modelled as Rayleigh fading frequency flat channels. The numerical results support the analysis and for a MIMO system maximum-sum selection is shown to outperform maximum-minimum selection. Additionally, pairwise error probability (PEP) analysis is performed for maximum-sum transmit antenna selection with the Golden Code and the diversity order is obtained. Finally, with the assumption of fibre-connected multiple antennas with finite buffers, multiple-antenna selection is implemented on the basis of maximum-sum antenna selection. Frequency flat Rayleigh fading channels are assumed together with a decode and forward transmission scheme. Outage probability analysis is performed by exploiting the steady-state stationarity of a Markov Chain model
    corecore