1,029 research outputs found

    Implementation of CAVENET and its usage for performance evaluation of AODV, OLSR and DYMO protocols in vehicular networks

    Get PDF
    Vehicle Ad-hoc Network (VANET) is a kind of Mobile Ad-hoc Network (MANET) that establishes wireless connection between cars. In VANETs and MANETs, the topology of the network changes very often, therefore implementation of efficient routing protocols is very important problem. In MANETs, the Random Waypoint (RW) model is used as a simulation model for generating node mobility pattern. On the other hand, in VANETs, the mobility patterns of nodes is restricted along the roads, and is affected by the movement of neighbour nodes. In this paper, we present a simulation system for VANET called CAVENET (Cellular Automaton based VEhicular NETwork). In CAVENET, the mobility patterns of nodes are generated by an 1-dimensional cellular automata. We improved CAVENET and implemented some routing protocols. We investigated the performance of the implemented routing protocols by CAVENET. The simulation results have shown that DYMO protocol has better performance than AODV and OLSR protocols.Peer ReviewedPostprint (published version

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    Performance analysis of OLSR protocol for wireless sensor networks and comparison evaluation with AODV protocol

    Get PDF
    Sensor networks are a sensing, computing and communication infrastructure that are able to observe and respond to phenomena in the natural environment and in our physical and cyber infrastructure. The sensors themselves can range from small passive microsensors to larger scale, controllable weather-sensing platforms. Presently, there are many research work for sensor networks. In our previous work, we implemented a simulation system for sensor networks and simulated the proposed system with reactive and preactive protocols. In this work, we want to investigate how the sensor network performs in case of using OLSR protocol and compare the simulation results with AODV protocol. The simulation results have shown that the consumed energy for OLSR protocol is better than AODV protocol. Also, the goodput for the case of using OLSR does not change too much compared with the case using AODV, but the goodput is not good when the number of nodes is increased.Peer ReviewedPostprint (published version

    Local heuristic for the refinement of multi-path routing in wireless mesh networks

    Full text link
    We consider wireless mesh networks and the problem of routing end-to-end traffic over multiple paths for the same origin-destination pair with minimal interference. We introduce a heuristic for path determination with two distinguishing characteristics. First, it works by refining an extant set of paths, determined previously by a single- or multi-path routing algorithm. Second, it is totally local, in the sense that it can be run by each of the origins on information that is available no farther than the node's immediate neighborhood. We have conducted extensive computational experiments with the new heuristic, using AODV and OLSR, as well as their multi-path variants, as underlying routing methods. For two different CSMA settings (as implemented by 802.11) and one TDMA setting running a path-oriented link scheduling algorithm, we have demonstrated that the new heuristic is capable of improving the average throughput network-wide. When working from the paths generated by the multi-path routing algorithms, the heuristic is also capable to provide a more evenly distributed traffic pattern

    A Performance Study of Proactive, Reactive and Hybrid Routing Protocols using Qualnet Simulator

    Get PDF
    The advancement in information technology and the need for large-scale communication infrastructures has triggered the era of Wireless Sensor Networks (WSNs). Mobile ad-hoc network (MANET) is a network of wireless mobile nodes which communicate with each other without any centralized control or established infrastructure. Routing is the process of selecting paths in a network along which data is to be sent. Routing is a critical task in MANET where the nodes are mobile. Dynamic and reliable routing protocols are required in the ad-hoc wireless networks, as they have no infrastructure (base station) and their network topology changes. There are various protocols for handling the routing problem in the ad-hoc wireless network environment. In this paper focus is given on studying the performance evaluation of various routing protocols using Qualnet simulator 5.0.2. The performance of the proactive, reactive and hybrid protocols are analyzed with different node densities for mobile and stationary nodes. The metrics used for the performance evaluation include average jitter, throughput, packet delivery ratio and average end to end delay
    • …
    corecore