935 research outputs found

    Performance analysis of OFDM with Wiener phase noise and frequency selective fading channel

    Get PDF
    This thesis studies the effect of Wiener phase noise on the performance of orthogonal frequency division multiplexing (OFDM) systems. The main performance metrics used in the analysis are capacity and signal-to-interference-plus-noise ratio (SINR). OFDM is a multi-carrier modulation technique in which data is transmitted in parallel streams using closely spaced (in frequency) orthogonal carriers. Phase noise is the random fluctuation in the phase of the oscillator signal used in the frequency translation between baseband and radio frequency. These fluctuations occur because of the inherent imperfections in the components that make up the oscillator. With respect to OFDM, phase noise destroys the orthogonality between the carriers and this causes interference between the parallel streams of data which results in degradation of the capacity and SINR. We derive closed-form analytical expressions of average capacity and average SINR and highlight the key parameters of the phase noise process and OFDM system that affect its behaviour. In comparison with previous works, a probability density function (PDF) based approach is used in arriving at these performance metrics. This approach necessitates the derivation of the PDF of a sum of gamma random variables. In earlier literature, this result is available for gamma variables that have a full-rank square-root normalized covariance matrix. We generalize the result for the rank-deficient case and apply this result to obtain the statistical expressions of capacity and SINR

    Uplink Performance of Time-Reversal MRC in Massive MIMO Systems Subject to Phase Noise

    Full text link
    Multi-user multiple-input multiple-output (MU-MIMO) cellular systems with an excess of base station (BS) antennas (Massive MIMO) offer unprecedented multiplexing gains and radiated energy efficiency. Oscillator phase noise is introduced in the transmitter and receiver radio frequency chains and severely degrades the performance of communication systems. We study the effect of oscillator phase noise in frequency-selective Massive MIMO systems with imperfect channel state information (CSI). In particular, we consider two distinct operation modes, namely when the phase noise processes at the MM BS antennas are identical (synchronous operation) and when they are independent (non-synchronous operation). We analyze a linear and low-complexity time-reversal maximum-ratio combining (TR-MRC) reception strategy. For both operation modes we derive a lower bound on the sum-capacity and we compare their performance. Based on the derived achievable sum-rates, we show that with the proposed receive processing an O(M)O(\sqrt{M}) array gain is achievable. Due to the phase noise drift the estimated effective channel becomes progressively outdated. Therefore, phase noise effectively limits the length of the interval used for data transmission and the number of scheduled users. The derived achievable rates provide insights into the optimum choice of the data interval length and the number of scheduled users.Comment: 13 pages, 6 figures, 2 tables, IEEE Transactions on Wireless Communications (accepted
    • …
    corecore