34 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Adaptive Multicast on Mobile Ad Hoc Networks Using Tree-Based Meshes With Variable Density of Redundant Paths

    Get PDF
    Multicasting has been extensively studied for mobile ad hoc networks (MANETs) because it is fundamental to many ad hoc network applications requiring close collaboration of multiple nodes in a group. A general approach is to construct an overlay structure such as multicast tree or mesh and to deliver a multicast packet to multiple receivers over the overlay structure. However, it either incurs a lot of overhead (multicast mesh) or performs poorly in terms of delivery ratio (multicast tree). This paper proposes an adaptive multicast scheme, called tree-based mesh with k-hop redundant paths (TBM k ), which constructs a multicast tree and adds some additional links/nodes to the multicast structure as needed to support redundancy. It is designed to make a prudent tradeoff between the overhead and the delivery efficiency by adaptively controlling the path redundancy depending on network traffic and mobility. In other words, when the network is unstable with high traffic and high mobility, a large k is chosen to provide more robust delivery of multicast packets. On the other hand, when the network traffic and the mobility are low, a small k is chosen to reduce the overhead. It is observed via simulation that TBM k improves the packet delivery ratio as much as 35% compared to the multicast tree approach. On the other hand, it reduces control overhead by 23–87% depending on the value of k compared to the multicast mesh approach. In general, TBM k with the small value of k offers more robust delivery mechanism but demands less overhead than multicast trees and multicast meshes, respectively

    PENGEMBANGAN PROTOKOL MULTICAST AODV DENGAN MEMPERHITUNGKAN JARAK EUCLIDEAN BERDASARKAN POSISI, KECEPATAN DAN DELAY TRANSMISI PADA VANET

    Get PDF
    Protokol routing dalam jaringan Vehicular Ad hoc Network (VANET) dikembangkan untuk memperbaiki kinerja transmisi paket data pada jaringan antar kendaraan. Berbagai pendekatan konektivitas antar jaringan kendaraan terus dilakukan karena VANET memiliki karakteristik yang berbeda dengan Mobile Ad hoc Network (MANET) yaitu dalam hal kecepatan node. Protokol Multicast Ad hoc On-Demand Distance Vector (MAODV) yang termasuk protokol routing reaktif dengan transmisi multicast banyak dilakukan penelitian dan peningkatan dengan berbagai pendekatan. Pada penelitian ini dilakukan pengembangan protokol routing MAODV dengan memperhitungkan jarak Euclidean antar node berdasarkan posisi, kecepatan dan delay transmisi. Protokol routing Multicast Adaptif Structured-tree berbasis Reactive Euclidean Node Knowledge (MAS-BRENK) diusulkan untuk memperbaiki mekanisme multicast tree maintenance yaitu proses join dan prune. Perhitungan bobot weighted product digunakan untuk menghitung bobot antar node berdasarkan jarak euclidean, kecepatan dan delay transmisi. Protokol yang diusulkan tersebut diujikan ke dalam skenario jalan perkotaan. Hasil pengujian menunjukkan bahwa protokol MAS-BRENK mengalami peningkatan pengiriman paket MACT sebesar 1.3% dan penerimaan paket MACT dengan flag prune sebesar 8.2%. Selain itu penerimaan paket MACT dengan flag join menurun sebesar 1.2%. Hasil akhir yang didapatkan yaitu peningkatan PDR sebanyak 0.2% dan throughput sebanyak 2%, serta penurunan delay 14.3% dari protokol MAODV

    Mobility-adaptive clustering and network-layer multicasting in mobile ad hoc networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    From a Location Service to a Multicast Service for Wireless Mobile Adhoc Networks

    Get PDF
    In this paper we propose a novel approach for multicasting in Mobile Ad-hoc Networks (MANETs). Since no fixed infrastructure of servers is assumed in MANETs, efficient location management schemes are necessary in order to store and provide information about various services offered throughout the network. MDLM is the first multicast algorithm relying on a location management service. We thus avoid fragile data structures such as trees or DAGs to manage multicast groups, without reverting to more reliable, yet overhead-prone mesh-based algorithms

    Adaptive Multicast on Mobile Ad Hoc Networks Using Tree-Based Meshes With Variable Density of Redundant Paths

    Get PDF
    Multicasting has been extensively studied for mobile ad hoc networks (MANETs) because it is fundamental to many ad hoc network applications requiring close collaboration of multiple nodes in a group. A general approach is to construct an overlay structure such as multicast tree or mesh and to deliver a multicast packet to multiple receivers over the overlay structure. However, it either incurs a lot of overhead (multicast mesh) or performs poorly in terms of delivery ratio (multicast tree). This paper proposes an adaptive multicast scheme, called tree-based mesh with k-hop redundant paths (TBM k ), which constructs a multicast tree and adds some additional links/nodes to the multicast structure as needed to support redundancy. It is designed to make a prudent tradeoff between the overhead and the delivery efficiency by adaptively controlling the path redundancy depending on network traffic and mobility. In other words, when the network is unstable with high traffic and high mobility, a large k is chosen to provide more robust delivery of multicast packets. On the other hand, when the network traffic and the mobility are low, a small k is chosen to reduce the overhead. It is observed via simulation that TBM k improves the packet delivery ratio as much as 35% compared to the multicast tree approach. On the other hand, it reduces control overhead by 23–87% depending on the value of k compared to the multicast mesh approach. In general, TBM k with the small value of k offers more robust delivery mechanism but demands less overhead than multicast trees and multicast meshes, respectively

    A Scalable Multicast Routing Protocol for Mobile Ad-Hoc Networks, Journal of Telecommunications and Information Technology, 2022, nr 2

    Get PDF
    The multicasting technique supports a variety of applications that require data to be instantaneously transmitted to a set of destination nodes. In environments with continuously moving nodes, such as mobile ad-hoc networks, the search for efficient routes from sources to the projected destinations is a common issue. Proposed Windmill protocol provides a scalable multicast solution for mobile ad-hoc networks. Windmill aims to improve routing protocol’s performance by introducing a hierarchal distributed routing algorithm and dividing the area into zones. Additionally, it attempts to demonstrate better scalability, performance and robustness when faced with frequent topology changes, by utilizing restricted directional flooding. A detailed and extensive simulated performance evaluation has been conducted to assess Windmill and compare it with multicast ad-hoc on-demand distance vector (MAODV) and on-demand multicast routing protocols (ODMRP). Simulation results show that the three protocols achieved high packet delivery rates in most scenarios. Results also show that Windmill is capable of achieving scalability by maintaining the minimum packet routing load, even upon increasing the nodes’ speed, the number of sources, the number of group members and the size of the simulated network. The results also indicate that it offers superior performance and is well suited for ad-hoc wireless networks with mobile hosts. The trade-off of using Windmill consists in slightly longer paths – a characteristic that makes it a good choice for applications that require simultaneous data transmission to a large set of nodes

    Reliable Multicast in Mobile Ad Hoc Wireless Networks

    Get PDF
    A mobile wireless ad hoc network (MANET) consists of a group of mobile nodes communicating wirelessly with no fixed infrastructure. Each node acts as source or receiver, and all play a role in path discovery and packet routing. MANETs are growing in popularity due to multiple usage models, ease of deployment and recent advances in hardware with which to implement them. MANETs are a natural environment for multicasting, or group communication, where one source transmits data packets through the network to multiple receivers. Proposed applications for MANET group communication ranges from personal network apps, impromptu small scale business meetings and gatherings, to conference, academic or sports complex presentations for large crowds reflect the wide range of conditions such a protocol must handle. Other applications such as covert military operations, search and rescue, disaster recovery and emergency response operations reflect the mission critical nature of many ad hoc applications. Reliable data delivery is important for all categories, but vital for this last one. It is a feature that a MANET group communication protocol must provide. Routing protocols for MANETs are challenged with establishing and maintaining data routes through the network in the face of mobility, bandwidth constraints and power limitations. Multicast communication presents additional challenges to protocols. In this dissertation we study reliability in multicast MANET routing protocols. Several on-demand multicast protocols are discussed and their performance compared. Then a new reliability protocol, R-ODMRP is presented that runs on top of ODMRP, a well documented best effort protocol with high reliability. This protocol is evaluated against ODMRP in a standard network simulator, ns-2. Next, reliable multicast MANET protocols are discussed and compared. We then present a second new protocol, Reyes, also a reliable on-demand multicast communication protocol. Reyes is implemented in the ns-2 simulator and compared against the current standards for reliability, flooding and ODMRP. R-ODMRP is used as a comparison point as well. Performance results are comprehensively described for latency, bandwidth and reliable data delivery. The simulations show Reyes to greatly outperform the other protocols in terms of reliability, while also outperforming R-ODMRP in terms of latency and bandwidth overhead

    Pengembangan Protokol Multicast AODV dengan Memperhitungkan Jarak Euclidean Berdasarkan Posisi, Kecepatan dan Delay Transmisi pada VANET

    Full text link
    corecore