30,143 research outputs found

    A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks

    Full text link
    This is the peer reviewed version of the following article: Moravejosharieh, Amirhossein, Lloret, Jaime. (2016). A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks.International Journal of Communication Systems, 29, 7, 1269-1292. DOI: 10.1002/dac.3098, which has been published in final form at http://doi.org/10.1002/dac.3098. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving[EN] Wireless body sensor networks are offered to meet the requirements of a diverse set of applications such as health-related and well-being applications. For instance, they are deployed to measure, fetch and collect human body vital signs. Such information could be further used for diagnosis and monitoring of medical conditions. IEEE 802.15.4 is arguably considered as a well-designed standard protocol to address the need for low-rate, low-power and low-cost wireless body sensor networks. Apart from the vast deployment of this technology, there are still some challenges and issues related to the performance of the medium access control (MAC) protocol of this standard that are required to be addressed. This paper comprises two main parts. In the first part, the survey has provided a thorough assessment of IEEE 802.15.4 MAC protocol performance where its functionality is evaluated considering a range of effective system parameters, that is, some of the MAC and application parameters and the impact of mutual interference. The second part of this paper is about conducting a simulation study to determine the influence of varying values of the system parameters on IEEE 802.15.4 performance gains. More specifically, we explore the dependability level of IEEE 802.5.4 performance gains on a candidate set of system parameters. Finally, this paper highlights the tangible needs to conduct more investigations on particular aspect(s) of IEEE 802.15.4 MAC protocol. Copyright (c) 2015 John Wiley & Sons, Ltd.Moravejosharieh, A.; Lloret, J. (2016). A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks. International Journal of Communication Systems. 29(7):1269-1292. https://doi.org/10.1002/dac.3098S12691292297Alrajeh, N. A., Lloret, J., & Canovas, A. (2014). A Framework for Obesity Control Using a Wireless Body Sensor Network. International Journal of Distributed Sensor Networks, 10(7), 534760. doi:10.1155/2014/534760Lopes I Silva B Rodrigues J Lloret J Proenca M A mobile health monitoring solution for weight control International Conference on Wireless Communications and Signal Processing (WCSP) Nanjing / China 2011 1 5Singh, N., Singh, A. K., & Singh, V. K. (2015). Design and performance of wearable ultrawide band textile antenna for medical applications. Microwave and Optical Technology Letters, 57(7), 1553-1557. doi:10.1002/mop.29131Lan, K., Chou, C.-M., Wang, T., & Li, M.-W. (2012). Using body sensor networks for motion detection: a cluster-based approach for green radio. Transactions on Emerging Telecommunications Technologies, 25(2), 199-216. doi:10.1002/ett.2559Lloret, J., Garcia, M., Catala, A., & Rodrigues, J. J. P. C. (2016). A group-based wireless body sensors network using energy harvesting for soccer team monitoring. International Journal of Sensor Networks, 21(4), 208. doi:10.1504/ijsnet.2016.079172Garcia M Catala A Lloret J Rodrigues J A wireless sensor network for soccer team monitoring International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS) Barcelona / Spain 2011 1 6Penders J Gyselinckx B Vullers R De Nil M Nimmala V van de Molengraft J Yazicioglu F Torfs T Leonov V Merken P Van Hoof C Human++: from technology to emerging health monitoring concepts 5th International Summer School and Symposium ISSS-MDBS on Medical Devices and Biosensors Hong Kong 2008 94 98Penders J Van de Molengraft J. Brown L Grundlehner B Gyselinckx B Van Hoof C Potential and challenges of body area networks for personal health Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC Minneapolis, U.S. 2009 6569 6572Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., … Kwak, K. S. (2010). A Comprehensive Survey of Wireless Body Area Networks. Journal of Medical Systems, 36(3), 1065-1094. doi:10.1007/s10916-010-9571-3Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84-93. doi:10.1109/mcom.2009.5350373Hall, P. S., Yang Hao, Nechayev, Y. I., Alomainy, A., Constantinou, C. C., Parini, C., … Bozzetti, M. (2007). Antennas and propagation for on-body communication systems. IEEE Antennas and Propagation Magazine, 49(3), 41-58. doi:10.1109/map.2007.4293935Mamaghanian, H., Khaled, N., Atienza, D., & Vandergheynst, P. (2011). Compressed Sensing for Real-Time Energy-Efficient ECG Compression on Wireless Body Sensor Nodes. IEEE Transactions on Biomedical Engineering, 58(9), 2456-2466. doi:10.1109/tbme.2011.2156795LAN-MAN Standards Committee the IEEE Computer Society IEEE standard for local and metropolitan area networks - part 15.4: low rate wireless personal area networks (LR-WPANs) 2011Petrova M Riihijarvi J Mahonen P Labella S Performance study of IEEE 802.15.4 using measurements and simulations IEEE Wireless Communications and Networking Conference (WCNC) Las Vegas, U.S. 2006 487 492Vaithiyanathan, J., Raju, R. K., & Sadayan, G. (2011). Performance Evaluation of IEEE 802.15.4 Using Association Process and Channel Measurement. Communications in Computer and Information Science, 409-417. doi:10.1007/978-3-642-22555-0_42Yazdi E Moravejosharieh A Willig A Pawlikowski K Coupling power and frequency adaptation for interference mitigation in IEEE 802.15.4-based mobile body sensor networks: part II 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC) Melbourne, Australia 2014 105 110Pelegris P Banitsas K Investigating the efficiency of IEEE 802.15.4 for medical monitoring applications 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC Boston, U.S. 2011 8215 8218Ranjit, J. S., & Shin, S. (2013). A Modified IEEE 802.15.4 Superframe Structure for Guaranteed Emergency Handling in Wireless Body Area Network. Network Protocols and Algorithms, 5(2), 1. doi:10.5296/npa.v5i2.3375Jianliang Zheng, & Lee, M. J. (2004). Will IEEE 802.15.4 make ubiquitous networking a reality?: a discussion on a potential low power, low bit rate standard. IEEE Communications Magazine, 42(6), 140-146. doi:10.1109/mcom.2004.1304251Toscano E Lo Bello L Cross-channel interference in IEEE 802.15.4 networks IEEE International Workshop on Factory Communication Systems, 2008. WFCS 2008 Dresden, Germany 2008 139 148Bashir F Baek WS Sthapit P Pandey D young Pyun J Coordinator assisted passive discovery for mobile end devices in IEEE 802.15.4 2013 IEEE Consumer Communications and Networking Conference (CCNC) Las Vegas, U.S. 2013 601 604Tabatabaei Yazdi E Willig A Pawlikowski K Shortening orphan time in IEEE 802.15.4: what can be gained 2013 19th IEEE International Conference on Networks (ICON) Singapore 2013 1 6Park, T. R., Kim, T. H., Choi, J. Y., Choi, S., & Kwon, W. H. (2005). Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA∕CA. Electronics Letters, 41(18), 1017. doi:10.1049/el:20051662Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535-547. doi:10.1109/49.840210IEEE Computer Society LAN MAN Standards Committee Wireless LAN medium access control (MAC) and physical layer (PHY) specifications 1997Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., Der Perre, L. V., Moerman, I., … Catthoor, F. (2008). Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer. IEEE Transactions on Wireless Communications, 7(9), 3359-3371. doi:10.1109/twc.2008.060057Xinhua Ling, Yu Cheng, Mark, J. W., & Xuemin Shen. (2008). A Renewal Theory Based Analytical Model for the Contention Access Period of IEEE 802.15.4 MAC. IEEE Transactions on Wireless Communications, 7(6), 2340-2349. doi:10.1109/twc.2008.070048Lee, C. Y., Cho, H. I., Hwang, G. U., Doh, Y., & Park, N. (2011). Performance modeling and analysis of IEEE 802.15.4 slotted CSMA/CA protocol with ACK mode. AEU - International Journal of Electronics and Communications, 65(2), 123-131. doi:10.1016/j.aeue.2010.02.007Wang, F., Zhao, Y., & Li, D. (2011). Analysis of CSMA/CA in IEEE 802.15.4. IET Communications, 5(15), 2187-2195. doi:10.1049/iet-com.2010.1007Zhu, J., Tao, Z., & Lv, C. (2011). Performance Evaluation of IEEE 802.15.4 CSMA/CA Scheme Adopting a Modified LIB Model. Wireless Personal Communications, 65(1), 25-51. doi:10.1007/s11277-011-0226-6Shu F Sakurai T Analysis of an energy conserving CSMA-CA GLOBECOM Washington DC, U.S. 2007 2536 2540Shu, F., & Sakurai, T. (2011). A new analytical model for the IEEE 802.15.4 CSMA-CA protocol. Computer Networks, 55(11), 2576-2591. doi:10.1016/j.comnet.2011.04.017Cano-Garcia, J. M., & Casilari, E. (2011). An empirical evaluation of the consumption of 802.15.4/ZigBee sensor motes in noisy environments. 2011 International Conference on Networking, Sensing and Control. doi:10.1109/icnsc.2011.5874886Baz, M., Mitchell, P. D., & Pearce, D. A. J. (2013). Versatile Analytical Model for Delay and Energy Evaluation in WPANs: A Case Study for IEEE 802.15.4 CSMA-CA. Wireless Personal Communications, 75(1), 415-445. doi:10.1007/s11277-013-1370-yLiu Q Czylwik A A priority-based adaptive service differentiation scheme for IEEE 802.15.4 sensor networks Proceedings of European Wireless 2014; 20th European Wireless Conference Barcelona, Spain 2014 1 6Golmie, N., Cypher, D., & Rebala, O. (s. f.). Performance evaluation of low rate WPANs for medical applications. IEEE MILCOM 2004. Military Communications Conference, 2004. doi:10.1109/milcom.2004.1494952Misic, J., Misic, V. B., & Shafi, S. (s. f.). Performance of IEEE 802.15.4 beacon enabled PAN with uplink transmissions in non-saturation mode - access delay for finite buffers. First International Conference on Broadband Networks. doi:10.1109/broadnets.2004.61Mišić, J., Shafi, S., & Mišić, V. B. (2005). The impact of MAC parameters on the performance of 802.15.4 PAN. Ad Hoc Networks, 3(5), 509-528. doi:10.1016/j.adhoc.2004.08.002Anastasi, G., Conti, M., & Di Francesco, M. (2011). A Comprehensive Analysis of the MAC Unreliability Problem in IEEE 802.15.4 Wireless Sensor Networks. IEEE Transactions on Industrial Informatics, 7(1), 52-65. doi:10.1109/tii.2010.2085440Lee, B.-H., Al Rasyid, M. U. H., & Wu, H.-K. (2012). Analysis of superframe adjustment and beacon transmission for IEEE 802.15.4 cluster tree networks. EURASIP Journal on Wireless Communications and Networking, 2012(1). doi:10.1186/1687-1499-2012-219Zimmerling, M., Ferrari, F., Mottola, L., Voigt, T., & Thiele, L. (2012). pTunes. Proceedings of the 11th international conference on Information Processing in Sensor Networks - IPSN ’12. doi:10.1145/2185677.2185730Rohm, D., Goyal, M., Hosseini, H., Divjak, A., & Bashir, Y. (2009). Configuring Beaconless IEEE 802.15.4 Networks Under Different Traffic Loads. 2009 International Conference on Advanced Information Networking and Applications. doi:10.1109/aina.2009.84Jin-Shyan Lee. (2006). Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks. IEEE Transactions on Consumer Electronics, 52(3), 742-749. doi:10.1109/tce.2006.1706465De Paz Alberola, R., & Pesch, D. (2012). Duty cycle learning algorithm (DCLA) for IEEE 802.15.4 beacon-enabled wireless sensor networks. Ad Hoc Networks, 10(4), 664-679. doi:10.1016/j.adhoc.2011.06.006Barbieri, A., Chiti, F., & Fantacci, R. (2006). WSN17-2: Proposal of an Adaptive MAC Protocol for Efficient IEEE 802.15.4 Low Power Communications. IEEE Globecom 2006. doi:10.1109/glocom.2006.989Jeon, J., Lee, J. W., Ha, J. Y., & Kwon, W. H. (2007). DCA: Duty-Cycle Adaptation Algorithm for IEEE 802.15.4 Beacon-Enabled Networks. 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring. doi:10.1109/vetecs.2007.35Kang, M., Chong, J., Hyun, H., Kim, S., Jung, B., & Sung, D. (2007). Adaptive Interference-Aware Multi-Channel Clustering Algorithm in a ZigBee Network in the Presence of WLAN Interference. 2007 2nd International Symposium on Wireless Pervasive Computing. doi:10.1109/iswpc.2007.342601Yi, P., Iwayemi, A., & Zhou, C. (2011). Developing ZigBee Deployment Guideline Under WiFi Interference for Smart Grid Applications. IEEE Transactions on Smart Grid, 2(1), 110-120. doi:10.1109/tsg.2010.2091655Tang, L., Wang, K.-C., Huang, Y., & Gu, F. (2007). Channel Characterization and Link Quality Assessment of IEEE 802.15.4-Compliant Radio for Factory Environments. IEEE Transactions on Industrial Informatics, 3(2), 99-110. doi:10.1109/tii.2007.898414Sha M Xing G Zhou G Liu S Wang X C-MAC: model-driven concurrent medium access control for wireless sensor networks IEEE INFOCOM 2009 Rio de Janeiro, Brazil 2009 1845 1853 10.1109/INFCOM.2009.5062105Peizhong Yi, Iwayemi, A., & Chi Zhou. (2010). Frequency agility in a ZigBee network for smart grid application. 2010 Innovative Smart Grid Technologies (ISGT). doi:10.1109/isgt.2010.5434747Torabi N Wong W Leung VCM A robust coexistence scheme for IEEE 802.15.4 wireless personal area networks IEEE Consumer Communications and Networking Conference (CCNC) Las Vegas, U.S. 2011 1031 1035 10.1109/CCNC.2011.5766322IEEE standard for local and metropolitan area networks - part 15.6: wireless body area networks IEEE Std 802.15.6-2012 2012 1 271 10.1109/IEEESTD.2012.6161600Kim, S., Kim, S., Kim, J.-W., & Eom, D.-S. (2012). Flexible beacon scheduling scheme for interference mitigation in body sensor networks. 2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON). doi:10.1109/secon.2012.6275772Bradai N Fourati LC Kamoun L Performance analysis of medium access control protocol for wireless body area networks 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA) Barcelona, Spain 2013 916 921Moravejosharieh A Yazdi ET Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part I: the need for enhancement IEEE 16th International Conference on Computational Science and Engineering (CSE) Sydney, Australia 2013 1226 1231Moravejosharieh A Yazdi ET Willig A Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part II: greedy channel utilization 19th IEEE International Conference on Networks (ICON) Singapore 2013 1 6Moravejosharieh A Yazdi E Willig A Pawlikowski K Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: continuous hopping approach Australasian Telecommunication Networks and Applications Conference (ATNAC) Melbourne, Australia 2014 93 98 10.1109/ATNAC.2014.7020880Moravejosharieh, A. H. (2015). Frequency-Adaptive Approach In IEEE 802.15.4 Wireless Body Sensor Networks: Continuous-Assessment or Periodic-Assessment? International Journal of Information, Communication Technology and Applications, 1(1), 19. doi:10.17972/ajicta2015113Moravejosharieh A Yazdi E Pawlikowski K Sirisena H Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: adaptive phase-shifting approach International Telecommunication Networks and Applications Conference (ITNAC) Sydney, Australia 2015 93 98Bian, K., Park, J.-M., & Gao, B. (2014). Channel Assignment for Multi-hop Cognitive Radio Networks. Cognitive Radio Networks, 101-116. doi:10.1007/978-3-319-07329-3_6Bian, K., Park, J.-M., & Gao, B. (2014). Coexistence-Aware Spectrum Sharing for Homogeneous Cognitive Radio Networks. Cognitive Radio Networks, 61-75. doi:10.1007/978-3-319-07329-3_4Wu C Yan H Huo H A multi-channel MAC protocol design based on IEEE 802.15.4 standard in industry 2012 10th IEEE International Conference on Industrial Informatics (INDIN) Beijing, China 2012 1206 1211 10.1109/INDIN.2012.6300916Incel, O. D. (2011). A survey on multi-channel communication in wireless sensor networks. Computer Networks, 55(13), 3081-3099. doi:10.1016/j.comnet.2011.05.020Kim Y Shin H Cha H Y-MAC: an energy-efficient multi-channel MAC protocol for dense wireless sensor networks Proceedings of the 7th International Conference on Information Processing in Sensor Networks IPSN '08 St. Louis MO, U.S. 2008 53 63Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: a survey. IEEE Communications Magazine, 44(4), 115-121. doi:10.1109/mcom.2006.1632658Wykret T Correia L Macedo D Giacomin J Andrade L Evaluation and avoidance of interference in WSN: a multi-radio node prototype using dynamic spectrum allocation IFIP Wireless Days (WD) Valencia, Spain 2013 1 3 10.1109/WD.2013.6686533Doyle L Sutton P Nolan K Lotze J Ozgul B Rondeau T Fahmy S Lahlou H DaSilva L Experiences from the IRIS testbed in dynamic spectrum access and cognitive radio experimentation IEEE Symposium on New Frontiers in Dynamic Spectrum Singapore 2010 1 8 10.1109/DYSPAN.2010.5457835Ansari, J., Zhang, X., & Mahonen, P. (2010). Multi-radio medium access control protocol for wireless sensor networks. International Journal of Sensor Networks, 8(1), 47. doi:10.1504/ijsnet.2010.034066Liu Z Wu W A dynamic multi-radio multi-channel MAC protocol for wireless sensor networks 2nd International Conference on Communication Software and Networks (ICCSN) Singapore 2010 105 109Xu, W., Trappe, W., & Zhang, Y. (2008). Defending wireless sensor networks from radio interference through channel adaptation. ACM Transactions on Sensor Networks, 4(4), 1-34. doi:10.1145/1387663.1387664Kim Y Shin H Cha H Y-MAC: an energy-efficient multi-channel MAC protocol for dense wireless sensor networks Proceedings of the 7th IEEE Computer Society International Conference on Information Processing in Sensor Networks IPSN '08 Washington, DC, USA 2008 53 63Tae Hyun Kim, Jae Yeol Ha, & Sunghyun Choi. (2009). Improving Spectral and Temporal Efficiency of Collocated IEEE 802.15.4 LR-WPANs. IEEE Transactions on Mobile Computing, 8(12), 1596-1609. doi:10.1109/tmc.2009.85Chowdhury, K. R., Nandiraju, N., Chanda, P., Agrawal, D. P., & Zeng, Q.-A. (2009). Channel allocation and medium access control for wireless sensor networks. Ad Hoc Networks, 7(2), 307-321. doi:10.1016/j.adhoc.2008.03.004Deylami, M., & Jovanov, E. (2012). A distributed and collaborative scheme for mitigating coexistence in IEEE 802.15.4 based WBANs. Proceedings of the 50th Annual Southeast Regional Conference on - ACM-SE ’12. doi:10.1145/2184512.2184514Deylami, M. N., & Jovanov, E. (2014). A Distributed Scheme to Manage The Dynamic Coexistence of IEEE 802.15.4-Based Health-Monitoring WBANs. IEEE Journal of Biomedical and Health Informatics, 18(1), 327-334. doi:10.1109/jbhi.2013.2278217Deylami M Jovanov E An implementation of a distributed scheme for managing the dynamic coexistence of wireless body area networks Southeastcon, 2013 Proceedings of IEEE Jacksonville, U.S. 2013 1 6 10.1109/SECON.2013.6567446Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A Survey on Wireless Body Area Networks: Technologies and Design Challenges. IEEE Communications Surveys & Tutorials, 16(3), 1635-1657. doi:10.1109/surv.2014.012214.00007Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. M. (2010). Body Area Networks: A Survey. Mobile Networks and Applications, 16(2), 171-193. doi:10.1007/s11036-010-0260-8Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless Body Area Networks: A Survey. IEEE Communications Surveys & Tutorials, 16(3), 1658-1686. doi:10.1109/surv.2013.121313.00064Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications, 17(1), 80-88. doi:10.1109/mwc.2010.5416354ULLAH, S., KHAN, P., ULLAH, N., SALEEM, S., HIGGINS, H., & Sup KWAK, K. (2009). A Review of Wireless Body Area Networks for Medical Applications. International Journal of Communications, Network and System Sciences, 02(08), 797-803. doi:10.4236/ijcns.2009.28093Boulis, A., Smith, D., Miniutti, D., Libman, L., & Tselishchev, Y. (2012). Challenges in body area networks for healthcare: the MAC. IEEE Communications Magazine, 50(5), 100-106. doi:10.1109/mcom.2012.6194389Pantelopoulos A Bourbakis N A survey on wearable biosensor systems for health monitoring 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vancouver, Canada 2008 4887 4890 10.1109/IEMBS.2008.4650309Takei, K., Honda, W., Harada, S., Arie, T., & Akita, S. (2014). Toward Flexible and Wearable Human-Interactive Health-Monitoring Devices. Advanced Healthcare Materials, 4(4), 487-500. doi:10.1002/adhm.201400546Caldeira, J. M. L. P., Rodrigues, J. J. P. C., & Lorenz, P. (2013). Intra-Mobility Support Solutions for Healthcare Wireless Sensor Networks–Handover Issues. IEEE Sensors Journal, 13(11), 4339-4348. doi:10.1109/jsen.2013.2267729Carrano, R. C., Passos, D., Magalhaes, L. C. S., & Albuquerque, C. V. N. (2014). Survey and Taxonomy of Duty Cycling Mechanisms in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 16(1), 181-194. doi:10.1109/surv.2013.052213.00116Sudevalayam, S., & Kulkarni, P. (2011). Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Communications Surveys & Tutorials, 13(3), 443-461. doi:10.1109/surv.2011.060710.00094Khanafer, M., Guennoun, M., & Mouftah, H. T. (2014). A Survey of Beacon-Enabled IEEE 802.15.4 MAC Protocols in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 16(2), 856-876. doi:10.1

    A Study of Medium Access Control Protocols for Wireless Body Area Networks

    Get PDF
    The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.Comment: 13 pages, 8 figures, 7 table

    Simulation Analysis of Medium Access Techniques

    Full text link
    This paper presents comparison of Access Techniques used in Medium Access Control (MAC) protocol for Wireless Body Area Networks (WBANs). Comparison is performed between Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Pure ALOHA and Slotted ALOHA (S-ALOHA). Performance metrics used for comparison are throughput (T), delay (D) and offered load (G). The main goal for comparison is to show which technique gives highest Throughput and lowest Delay with increase in Load. Energy efficiency is major issue in WBAN that is why there is need to know which technique performs best for energy conservation and also gives minimum delay.Comment: NGWMN with 7th IEEE International Conference on Broadband and Wireless Computing, Com- munication and Applications (BWCCA 2012), Victoria, Canada, 201

    A Review of Wireless Body Area Networks for Medical Applications

    Full text link
    Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive ambulatory health monitoring for a long period of time and provide real-time updates of the patient's status to the physician. They are widely used for ubiquitous healthcare, entertainment, and military applications. This paper reviews the key aspects of WBANs for numerous applications. We present a WBAN infrastructure that provides solutions to on-demand, emergency, and normal traffic. We further discuss in-body antenna design and low-power MAC protocol for WBAN. In addition, we briefly outline some of the WBAN applications with examples. Our discussion realizes a need for new power-efficient solutions towards in-body and on-body sensor networks.Comment: 7 pages, 7 figures, and 3 tables. In V3, the manuscript is converted to LaTe

    SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks

    Full text link
    In this work, we propose a reliable, power efficient and high throughput routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop topology to achieve minimum energy consumption and longer network lifetime. We propose a cost function to select parent node or forwarder. Proposed cost function selects a parent node which has high residual energy and minimum distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes while distance parameter ensures successful packet delivery to sink. Simulation results show that our proposed protocol maximize the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Transmission Delay of Multi-hop Heterogeneous Networks for Medical Applications

    Full text link
    Nowadays, with increase in ageing population, Health care market keeps growing. There is a need for monitoring of Health issues. Body Area Network consists of wireless sensors attached on or inside human body for monitoring vital Health related problems e.g, Electro Cardiogram (ECG), ElectroEncephalogram (EEG), ElectronyStagmography(ENG) etc. Data is recorded by sensors and is sent towards Health care center. Due to life threatening situations, timely sending of data is essential. For data to reach Health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to Health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. After ZigBee there are three available networks, through which data is sent. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to Health care center. Main aim of this paper is to calculate delay of each link in each path over multihop wireless channel.Comment: BioSPAN with 7th IEEE International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201
    corecore