6,930 research outputs found

    Soft-Decision-Driven Channel Estimation for Pipelined Turbo Receivers

    Full text link
    We consider channel estimation specific to turbo equalization for multiple-input multiple-output (MIMO) wireless communication. We develop a soft-decision-driven sequential algorithm geared to the pipelined turbo equalizer architecture operating on orthogonal frequency division multiplexing (OFDM) symbols. One interesting feature of the pipelined turbo equalizer is that multiple soft-decisions become available at various processing stages. A tricky issue is that these multiple decisions from different pipeline stages have varying levels of reliability. This paper establishes an effective strategy for the channel estimator to track the target channel, while dealing with observation sets with different qualities. The resulting algorithm is basically a linear sequential estimation algorithm and, as such, is Kalman-based in nature. The main difference here, however, is that the proposed algorithm employs puncturing on observation samples to effectively deal with the inherent correlation among the multiple demapper/decoder module outputs that cannot easily be removed by the traditional innovations approach. The proposed algorithm continuously monitors the quality of the feedback decisions and incorporates it in the channel estimation process. The proposed channel estimation scheme shows clear performance advantages relative to existing channel estimation techniques.Comment: 11 pages; IEEE Transactions on Communications 201

    Detection Algorithms for Molecular MIMO

    Full text link
    In this paper, we propose a novel design for molecular communication in which both the transmitter and the receiver have, in a 3-dimensional environment, multiple bulges (in RF communication this corresponds to antenna). The proposed system consists of a fluid medium, information molecules, a transmitter, and a receiver. We simulate the system with a one-shot signal to obtain the channel's finite impulse response. We then incorporate this result within our mathematical analysis to determine interference. Molecular communication has a great need for low complexity, hence, the receiver may have incomplete information regarding the system and the channel state. Thus, for the cases of limited information set at the receiver, we propose three detection algorithms, namely adaptive thresholding, practical zero forcing, and Genie-aided zero forcing.Comment: 6 pages, 6 figures, 2015 IEEE ICC accepte

    Low Complexity V-BLAST MIMO-OFDM Detector by Successive Iterations Reduction

    Full text link
    V-BLAST detection method suffers large computational complexity due to its successive detection of symbols. In this paper, we propose a modified V-BLAST algorithm to decrease the computational complexity by reducing the number of detection iterations required in MIMO communication systems. We begin by showing the existence of a maximum number of iterations, beyond which, no significant improvement is obtained. We establish a criterion for the number of maximum effective iterations. We propose a modified algorithm that uses the measured SNR to dynamically set the number of iterations to achieve an acceptable bit-error rate. Then, we replace the feedback algorithm with an approximate linear function to reduce the complexity. Simulations show that significant reduction in computational complexity is achieved compared to the ordinary V-BLAST, while maintaining a good BER performance.Comment: 6 pages, 7 figures, 2 tables. The final publication is available at www.aece.r
    • …
    corecore