1,645 research outputs found

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    A Wised Routing Protocols for Leo Satellite Networks

    Full text link
    This Study proposes a routing strategy of combining a packet scheduling with congestion control policy that applied for LEO satellite network with high speed and multiple traffic. It not only ensures the QoS of different traffic, but also can avoid low priority traffic to be "starve" due to their weak resource competitiveness, thus it guarantees the throughput and performance of the network. In the end, we set up a LEO satellite network simulation platform in OPNET to verify the effectiveness of the proposed algorithm.Comment: The 10th Asian Control Conference (ASCC), Universiti Teknologi Malaysia, Malaysi

    A random access MAC protocol for MPR satellite networks

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaRandom access approaches for Low Earth Orbit (LEO) satellite networks are usually incompatible with the Quality of Service (QoS) requirements of multimedia tra c, especially when hand-held devices must operate with very low power. Cross-Layered optimization architectures, combined with Multipacket Reception (MPR)schemes are a good choice to enhance the overall performance of a wireless system. Hybrid Network-assisted Diversity Multiple Access (H-NDMA) protocol, exhibits high energy e ciency, with MPR capability, but its use with satellites is limited by the high round trip time. This protocol was adapted to satellites, in Satellite-NDMA, but it required a pre-reservation mechanism that introduces a signi cant delay. This dissertation proposes a random access protocol that uses H-NDMA, for Low Earth Orbit (LEO) satellite networks, named Satellite Random-NDMA (SR-NDMA). The protocol addresses the problem inherent to satellite networks (large round trip time and signi cant energy consumption) de ning a hybrid approach with an initial random access plus possible additional scheduled retransmissions. An MPR receiver combines the multiple copies received, gradually reducing the error rate. Analytical performance models are proposed for the throughput, delay, jitter and energy e ciency considering nite queues at the terminals. It is also addressed the energy e ciency optimization, where the system parameters are calculated to guarantee the QoS requirements. The proposed system's performance is evaluated for a Single-Carrier with Frequency Domain Equalization (SC-FDE) receiver. Results show that the proposed system is energy e cient and can provide enough QoS to support services such as video telephony

    QoS in LEO satellite networks with multipacket reception

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaLow Earth Orbit (LEO) satellite networks can improve terrestrial wireless networks to allow global broadband services for Mobile Terminals (MT), regardless of the users' location. In this context, hybrid telecommunication systems combining satellites with Long Term Evolution (LTE) networks, like the LightSquared technology, are intended to provide ubiquitous high-speed services. This dissertation analyses the performance of a random access protocol that uses Hybrid Network-assisted Diversity Multiple Access (H-NDMA), for a LEO satellite system network, named by Satellite Random NDMA (SR-NDMA). The protocol also considers a Single Carrier-Frequency Domain Equalization (SC-FDE) scheme for the uplink transmission and a Multipacket Reception (MPR) receiver. In this scenario, the transmission of data packets between MTs and the Base Station (BS) is made through random access and schedule access slots, organized into super-frames with the duration of a Round Trip Time (RTT). A SR-NDMA simulator is implemented to measure the system performance in matters of throughput, energy consumption, system delay and also the protocol capacity to meet Quality of Service (QoS) requirements. A set of simulations tests were made with a random Poisson process tra c generation to validate the analytical model. The capacity to ful l the QoS requirements of a real-time tra c class was also tested.FCT/MEC: MPSat - PTDC/EEA-TEL/099074/2008, OPPORTUNISTIC CR - PTDC/EEA-TEL/115981/2009, Femtocells - PTDC/EEA-TEL/120666/2010 e ADIN - PTDC/EEI-TEL/2990/201

    Link failure testing project on a satellite SDN network using Bidirectional Forwarding Detection

    Get PDF
    This project focuses on implementing a variable grid topology network for simulating an inter-satellite links connection to evaluate link failure detection times in a satellite SoftwareDefined Networking (SDN) using the Bidirectional Forwarding Detection (BFD) protocol (RFC 5880). Today, there is significant growth and deployment of LEO satellite networks, and SDN technology is being successfully used in these LEO satellite constellation networks due to the flexibility that this technology offers in the face of dynamic variation in topology network, limited bandwidth and traffic variations. An important point for the correct operation of these networks is the reliability and stability of the links that interconnect the satellites of the constellation, since this constellation is in permanent motion, orbiting the earth. The work developed in this project is directly related to this topic and the BFD detection protocol has been used to determine the connectivity failures of the test network links. The BFD is a protocol which provides fast forwarding path failure detection times and it is independent from physical media, routing protocols and data protocols. The BFD protocol works in the forwarding plane and is well suited for use with SDN switches. The testbed has been built using the "ContainerNet" Python API to implement the network topology and link interconnection of each satellite node. The satellite switching service is implemented in a docker instance, using OpenVirtualSwitch (OVS) as the internal packet switch of each node. OpenVirtualSwitch is an SDN-compliant programmable switching network device that has support for the BFD protocol. A transmission scenario is built on this switching network. This scenario includes two nodes that work as communication endpoints. The nodes have been configured so that between the endpoints there are two separate alternative paths. In addition to the datapath configuration, the BFD protocol has been configured to monitor the status of each link. A software developed running in all intermediate nodes are able to notify a link failure upstream of the datapath until the end nodes. An then end nodes can switch to another path. The final results must determine which are the BFD parameters to achieve a compromise between the BFD packet signaling period and the bandwidth used to keep the VoIP communication parameters within the acceptable limits in the event of a link failure with a route update
    • …
    corecore