45 research outputs found

    Color Image Analysis by Quaternion-Type Moments

    No full text
    International audienceIn this paper, by using the quaternion algebra, the conventional complex-type moments (CTMs) for gray-scale images are generalized to color images as quaternion-type moments (QTMs) in a holistic manner. We first provide a general formula of QTMs from which we derive a set of quaternion-valued QTM invariants (QTMIs) to image rotation, scale and translation transformations by eliminating the influence of transformation parameters. An efficient computation algorithm is also proposed so as to reduce computational complexity. The performance of the proposed QTMs and QTMIs are evaluated considering several application frameworks ranging from color image reconstruction, face recognition to image registration. We show they achieve better performance than CTMs and CTM invariants (CTMIs). We also discuss the choice of the unit pure quaternion influence with the help of experiments. appears to be an optimal choice

    Robust hashing for image authentication using quaternion discrete Fourier transform and log-polar transform

    No full text
    International audienceIn this work, a novel robust image hashing scheme for image authentication is proposed based on the combination of the quaternion discrete Fourier transform (QDFT) with the log-polar transform. QDFT offers a sound way to jointly deal with the three channels of color images. The key features of the present method rely on (i) the computation of a secondary image using a log-polar transform; and (ii) the extraction from this image of low frequency QDFT coefficients' magnitude. The final image hash is generated according to the correlation of these magnitude coefficients and is scrambled by a secret key to enhance the system security. Experiments were conducted in order to analyze and identify the most appropriate parameter values of the proposed method and also to compare its performance to some reference methods in terms of receiver operating characteristics curves. The results show that the proposed scheme offers a good sensitivity to image content alterations and is robust to the common content-preserving operations, and especially to large angle rotation operations

    Image Description using Radial Associated Laguerre Moments

    Get PDF
    This study proposes a new set of moment functions for describing gray-level and color images based on the associated Laguerre polynomials, which are orthogonal over the whole right-half plane. Moreover, the mathematical frameworks of radial associated Laguerre moments (RALMs) and associated rotation invariants are introduced. The proposed radial Laguerre invariants retain the basic form of disc-based moments, such as Zernike moments (ZMs), pseudo-Zernike moments (PZMs), Fourier-Mellin moments (OFMMs), and so on. Therefore, the rotation invariants of RALMs can be easily obtained. In addition, the study extends the proposed moments and invariants defined in a gray-level image to a color image using the algebra of quaternion to avoid losing some significant color information. Finally, the paper verifies the feature description capacities of the proposed moment function in terms of image reconstruction and invariant pattern recognition accuracy. Experimental results confirmed that the associated Laguerre moments (ALMs) perform better than orthogonal OFMMs in both noise-free and noisy conditions

    Image Hash Minimization for Tamper Detection

    Full text link
    Tamper detection using image hash is a very common problem of modern days. Several research and advancements have already been done to address this problem. However, most of the existing methods lack the accuracy of tamper detection when the tampered area is low, as well as requiring long image hashes. In this paper, we propose a novel method objectively to minimize the hash length while enhancing the performance at low tampered area.Comment: Published at the 9th International Conference on Advances in Pattern Recognition, 201

    Video and Imaging, 2013-2016

    Get PDF

    A Quaternionic Wavelet Transform-based Approach for Object Recognition

    Get PDF
    Recognizing the objects in complex natural scenes is the challenging task as the object may be occluded, may vary in shape, position and in size. In this paper a method to recognize objects from different categories of images using quaternionic wavelet transform (QWT) is presented. This transform separates the information contained in the image better than a traditional Discrete wavelet transform and provides a multiscale image analysis whose coefficients are 2D analytic, with one near-shift invariant magnitude and three phases. The two phases encode local image shifts and the third one contains texture information. In the domain of object recognition, it is often to classify objects from images that make only limited part of the image. Hence to identify local features and certain region of images, patches are extracted over the interest points detected from the original image using Wavelet based interest point detector. Here QWT magnitude and phase features are computed for every patch. Then these features are trained, tested and classified using SVM classifier in order to have supervised learning model. In order to compare the performance of local feature with global feature, the transform is applied to the entire image and the global features are derived. The performance of QWT is compared with discrete wavelet transform (DWT) and dual tree discrete wavelet transform (DTDWT). Observations revealed that QWT outperforms the DWT and shift invariant DTDWT with lesser equal error rate. The experimental evaluation is done using the complex Graz databases.Defence Science Journal, Vol. 64, No. 4, July 2014, pp. 350-357, DOI:http://dx.doi.org/10.14429/dsj.64.450

    Robust face recognition using convolutional neural networks combined with Krawtchouk moments

    Get PDF
    Face recognition is a challenging task due to the complexity of pose variations, occlusion and the variety of face expressions performed by distinct subjects. Thus, many features have been proposed, however each feature has its own drawbacks. Therefore, in this paper, we propose a robust model called Krawtchouk moments convolutional neural networks (KMCNN) for face recognition. Our model is divided into two main steps. Firstly, we use 2D discrete orthogonal Krawtchouk moments to represent features. Then, we fed it into convolutional neural networks (CNN) for classification. The main goal of the proposed approach is to improve the classification accuracy of noisy grayscale face images. In fact, Krawtchouk moments are less sensitive to noisy effects. Moreover, they can extract pertinent features from an image using only low orders. To investigate the robustness of the proposed approach, two types of noise (salt and pepper and speckle) are added to three datasets (YaleB extended, our database of faces (ORL), and a subset of labeled faces in the wild (LFW)). Experimental results show that KMCNN is flexible and performs significantly better than using just CNN or when we combine it with other discrete moments such as Tchebichef, Hahn, Racah moments in most densities of noises

    Robust color image watermarking using Discrete Wavelet Transform, Discrete Cosine Transform and Cat Face Transform

    Get PDF
    The primary concern in color image watermarking is to have an effective watermarking method that can be robust against common image processing attacks such as JPEG compression, rotation, sharpening, blurring, and salt and pepper attacks for copyright protection purposes. This research examined the existing color image watermarking methods to identify their strengths and weaknesses, and then proposed a new method and the best embedding place in the host image to enhance and overcome the existing gap in the color image watermarking methods. This research proposed a new robust color image watermarking method using Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Cat Face Transform. In this method, both host and watermark images decomposed into three color channels: red, green, and blue. The second level DWT was applied to each color channel of the host image. DWT decomposed the image into four sub-band coefficients: Low-pass filter in the row, Low-pass filter in the column (LL) signifies approximation coefficient, High-pass filter in the row, Low-pass filter in the column (HL) signifies horizontal coefficient, Low-pass filter in the row, High-pass filter in the column (LH) signifies vertical coefficient, and High-pass filter in the row, High-pass filter in the column (HH) signifies diagonal coefficient. Then, HL2 and LH2 were chosen as the embedding places to improve the robustness and security, and they were divided into 4×4 non-overlapping blocks, then DCT was applied on each block. DCT turned a signal into the frequency domain, which is effective in image processing, specifically in JPEG compression due to good performance. On the other hand, the Cat Face Transform method with a private key was used to enhance the robustness of the proposed method by scrambling the watermark image before embedding. Finally, the second private key was used to embed the watermark in the host image. The results show enhanced robustness against common image processing attacks: JPEG compression (3.37%), applied 2% salt and pepper (0.4%), applied 10% salt and pepper (2%), applied 1.0 radius sharpening (0.01%), applied 1.0 radius blurring (8.1%), and can withstand rotation attack. In sum, the proposed color image watermarking method indicates better robustness against common image processing attacks compared to other reviewed methods
    corecore