16 research outputs found

    Building a test bed for simulation analysis for the internet of things

    Get PDF
    Mestrado com dupla diplomação com a Universidade Tecnológica e Federal do ParanáThe Internet of Things (IoT) enables the mix between the physical and informational world. Physical objects will be able to see, hear, think together, share information and coordinate decisions, without human interference in a variety of domains. To enable this vision of IoT in large scale is expected of the equipment to be low-cost, mobile, power efficient, computational constrained, and wireless communication enabled. This project performs an extensive overview of the state-of-the-art in communication technologies for IoT, simulation theory and tools. It also describes test bed for IoT simulation and its implementation. The simulation was built with Castalia Simulator (i.e. Wireless Sensor Networks (WSN) network) and INET framework (i.e. IP network), both extends OMNeT++ features. There are two independent networks that communicate through files and exchange information about source, destination, payload and simulation time. Analyzing the outputs is possible to assure that the routing protocol that is provided in the Castalia Simulator does not provide any advantage in terms of packets loss, packets reception or energy consumption.A Internet das Coisas (IoT) permite a mistura entre o mundo físico e informacional. Objetos físicos serão capazes de ver, ouvir, pensar juntos, compartilhar informações e coordenar decisões, sem interferência humana em uma variedade de domínios. Para permitir essa visão de IoT em larga escala, espera-se que o equipamento seja de baixo custo, móvel, eficiente em termos de energia, com restrições computacionais e possibilite a comunicação sem fio. Este projeto faz uma extensa visão geral do estado da arte em tecnologias de comunicação para IoT, teoria de simulação e ferramentas. Também descreve o banco de testes para simulação de IoT e sua implementação. A simulação foi construída com o Simulador Castalia (ou seja, rede WSN) e o framework INET (ou seja, rede IP), ambos estendem os recursos do OMNeT ++. Existem duas redes independentes que se comunicam através de arquivos e trocam informações sobre origem, destino, carga útil e tempo de simulação. Analisando os resultados é possível garantir que o protocolo de roteamento que é fornecido no Simulador Castalia não oferece qualquer vantagem em termos de quebra de pacotes, recepção de pacotes ou consumo de energia

    Intelligent spectrum management techniques for wireless cognitive radio networks

    Get PDF
    PhD ThesisThis thesis addresses many of the unique spectrum management chal- lenges in CR networks for the rst time. These challenges have a vital e ect on the network performance and are particularly di cult to solve due to the unique characteristics of CR networks. Speci cally, this thesis proposes and investigates three intelligent spectrum management tech- niques for CR networks. The issues investigated in this thesis have a fundamental impact on the establishment, functionality and security of CR networks. First, an intelligent primary receiver-aware message exchange protocol for CR ad hoc networks is proposed. It considers the problem of alleviat- ing the interference collision risk to primary user communication, explic- itly to protect primary receivers that are not detected during spectrum sensing. The proposed protocol achieves a higher measure of safeguard- ing. A practical scenario is considered where no global network topology is known and no common control channel is assumed to exist. Second, a novel CR broadcast protocol (CRBP) to reliably disseminate the broadcast messages to all or most of the possible CR nodes in the network is proposed. The CRBP formulates the broadcast problem as a bipartite-graph problem. Thus, CRBP achieves a signi cant successful delivery ratio by connecting di erent local topologies, which is a unique feature in CR ad hoc networks. Finally, a new defence strategy to defend against spectrum sensing data falsi cation attacks in CR networks is proposed. In order to identify malicious users, the proposed scheme performs multiple veri cations of sensory data with the assistance of trusted nodes.Higher Committee For Education Devel- opment in Iraq (HCED-Iraq

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    Design and optimisation of a low cost Cognitive Mesh Network

    Get PDF
    Wireless Mesh Networks (WMNs) have been touted as the most promising wireless technology in providing high-bandwidth Internet access to rural, remote and under-served areas, with relatively lower investment cost as compared to traditional access networks. WMNs structurally comprise of mesh routers and mesh clients. Furthermore, WMNs have an envisaged ability to provide a heterogeneous network system that integrates wireless technologies such as IEEE 802.22 WRAN, IEEE 802.16 WiMAX, IEEE 802.11 Wi-Fi, Blue-tooth etc. The recent proliferation of new devices on the market such as smart phones and, tablets, and the growing number of resource hungry applications has placed a serious strain on spectrum availability which gives rise to the spectrum scarcity problem. The spectrum scarcity problem essentially results in increased spectrum prices that hamper the growth and efficient performance of WMNs as well as subsequent transformation of WMN into the envisaged next generation networks. Recent developments in TV white space communications technology and the emergence of Cognitive radio devices that facilitate Dynamic Spectrum Access (DSA) have provided an opportunity to mitigate the spectrum scarcity problem. To solve the scarcity problem, this thesis reconsiders the classical Network Engineering (NE) and Traffic Engineering (TE) problems to objectively design a low cost Cognitive Mesh network that promotes efficient resources utilization and thereby achieve better Quality of Service (QoS) levels

    On Statistical QoS Provisioning for Smart Grid

    Get PDF
    Current power system is in the transition from traditional power grid to Smart Grid. A key advantage of Smart Grid is its integration of advanced communication technologies, which can provide real-time system-wide two-way information links. Since the communication system and power system are deeply coupled within the Smart Grid system, it makes Quality of Service (QoS) performance analysis much more complex than that in either system alone. In order to address this challenge, the effective rate theory is studied and extended in this thesis, where a new H transform based framework is proposed. Various scenarios are investigated using the new proposed effective rate framework, including both independent and correlated fading channels. With the effective rate as a connection between the communication system and the power system, an analysis of the power grid observability under communication constraints is performed. Case studies show that the effective rate provides a cross layer analytical framework within the communication system, while its statistical characterisation of the communication delay has the potential to be applied as a general coupling point between the communication system and the power system, especially when real-time applications are considered. Besides the theoretical QoS performance analysis within Smart Grid, a new Software Defined Smart Grid testbed is proposed in this thesis. This testbed provides a versatile evaluation and development environment for Smart Grid QoS performance studies. It exploits the Real Time Digital Simulator (RTDS) to emulate different power grid configurations and the Software Defined Radio (SDR) environment to implement the communication system. A data acquisition and actuator module is developed, which provides an emulation of various Intelligent Electronic Devices (IEDs). The implemented prototype demonstrates that the proposed testbed has the potential to evaluate real time Smart Grid applications such as real time voltage stability control

    Integration of TV White Space and Femtocell Networks.

    Get PDF
    PhDFemtocell is an effective approach to increase system capacity in cellular networks. Since traditional Femtocells use the same frequency band as the cellular network, cross-tier and co-tier interference exist in such Femtocell networks and have a major impact on deteriorating the system throughput. In order to tackle these challenges, interference mitigation has drawn attentions from both academia and industry. TV White Space (TVWS) is a newly opened portion of spectrum, which comes from the spare spectrum created by the transition from analogue TV to digital TV. It can be utilized by using cognitive radio technology according to the policies from telecommunications regulators. This thesis considers using locally available TVWS to reduce the interference in Femtocell networks. The objective of this research is to mitigate the downlink cross-tier and co-tier interference in different Femtocell deployment scenarios, and increase the throughput of the overall system. A Geo-location database model to obtain locally available TVWS information in UK is developed in this research. The database is designed using power control method to calculate available TVWS channels and maximum allowable transmit power based on digital TV transmitter information in UK and regulations on unlicensed use of TVWS. The proposed database model is firstly combined with a grid-based resource allocation scheme and investigated in a simplified Femtocell network to demonstrate the gains of using TVWS in Femtocell networks. Furthermore, two Femtocell deployment scenarios are studied in this research. In the suburban Femtocell deployment scenario, a novel system architecture that consists of the Geo-location database and a resource allocation scheme using TVWS is proposed to mitigate cross-tier interference between Macrocell and Femtocells. In the dense Femtocell deployment scenario, a power efficient resource allocation scheme is proposed to maximize the throughput of Femtocells while limiting the co-tier interference among Femtocells. The optimization problem in the power efficient scheme is solved by using sequential quadratic programming method. The simulation results show that the proposed schemes can effectively mitigate the interference in Femtocell networks in practical deployment scenarios

    Channel parameter tuning in a hybrid Wi-Fi-Dynamic Spectrum Access Wireless Mesh Network

    Get PDF
    This work addresses Channel Assignment in a multi-radio multi-channel (MRMC) Wireless Mesh Network (WMN) using both Wi-Fi and Dynamic Spectrum Access (DSA) spectrum bands and standards. This scenario poses new challenges because nodes are spread out geographically so may have differing allowed channels and experience different levels of external interference in different channels. A solution must meet two conflicting requirements simultaneously: 1) avoid or minimise interference within the network and from external interference sources, and 2) maintain connectivity within the network. These two requirements must be met while staying within the link constraints and the radio interface constraints, such as only assigning as many channels to a node as it has radios. This work's original contribution to the field is a unified framework for channel optimisation and assignment in a WMN that uses both DSA and traditional Wi-Fi channels for interconnectivity. This contribution is realised by providing and analysing the performance of near-optimal Channel Assignment (CA) solutions using metaheuristic algorithms for the MRMC WMNs using DSA bands. We have created a simulation framework for evaluating the algorithms. The performance of Simulated Annealing, Genetic Algorithm, Differential Evolution, and Particle Swarm Optimisation algorithms have been analysed and compared for the CA optimisation problem. We introduce a novel algorithm, used alongside the metaheuristic optimisation algorithms, to generate feasible candidate CA solutions. Unlike previous studies, this sensing and CA work takes into account the requirement to use a Geolocation Spectrum Database (GLSD) to get the allowed channels, in addition to using spectrum sensing to identify and estimate the cumulative severity of both internal and external interference sources. External interference may be caused by other secondary users (SUs) in the vicinity or by primary transmitters of the DSA band whose emissions leak into adjacent channels, next-toadjacent, or even into further channels. We use signal-to-interference-plus-noise ratio (SINR) as the optimisation objective. This incorporates any possible source or type of interference and makes our method agnostic to the protocol or technology of the interfering devices while ensuring that the received signal level is high enough for connectivity to be maintained on as many links as possible. To support our assertion that SINR is a reasonable criterion on which to base the optimisation, we have carried out extensive outdoor measurements in both line-of-sight and wooded conditions in the television white space (TVWS) DSA band and the 5 GHz Wi-Fi band. These measurements show that SINR is useful as a performance measure, especially when the interference experienced on a link is high. Our statistical analysis shows that SINR effectively differentiates the performance of different channels and that SINR is well correlated with throughput and is thus a good predictor of end-user experience, despite varying conditions. We also identify and analyse the idle times created by Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) contention-based Medium Access Control (MAC) operations and propose the use of these idle times for spectrum sensing to measure the SINR on possible channels. This means we can perform spectrum sensing with zero spectrum sensing delay experienced by the end user. Unlike previous work, this spectrum sensing is transparent and can be performed without causing any disruption to the normal data transmission of the network. We conduct Markov chain analysis to find the expected length of time of a sensing window. We also derive an efficient minimum variance unbiased estimator of the interference plus noise and show how the SINR can be found using this estimate. Our estimation is more granular, accurate, and appropriate to the problem of Secondary User (SU)-SU coexistence than the binary hypothesis testing methods that are most common in the literature. Furthermore, we construct confidence intervals based on the probability density function derived for the observations. This leads to finding and showing the relationships between the number of sampling windows and sampling time, the interference power, and the achievable confidence interval width. While our results coincide with (and thus are confirmed by) some key previous recommendations, ours are more precise, granular, and accurate and allow for application to a wider range of operating conditions. Finally, we present alterations to the IEEE 802.11k protocol to enable the reporting of spectrum sensing results to the fusion or gateway node and algorithms for distributing the Channel Assignment once computed. We analyse the convergence rate of the proposed procedures and find that high network availability can be maintained despite the temporary loss of connectivity caused by the channel switching procedure. This dissertation consolidates the different activities required to improve the channel parameter settings of a multi-radio multi-channel DSA-WMN. The work facilitates the extension of Internet connectivity to the unconnected or unreliably connected in rural or peri-urban areas in a more cost-effective way, enabling more meaningful and affordable access technologies. It also empowers smaller players to construct better community networks for sharing local content. This technology can have knock-on effects of improved socio-economic conditions for the communities that use it

    A Framework for the Performance Analysis and Simulation of RF-Mesh Advanced Metering Infrastructures for Smart Grid Applications

    Get PDF
    RÉSUMÉ L’Infrastructure de Mesurage Avancée (IMA), conçue à l’origine pour lire à distance des compteurs intelligents, est actuellement considérée comme une composante essentielle dans le domaine des Smart Grid. Le but principal des IMAs est de connecter le grand nombre de compteurs intelligents installés chez les clients au le centre de contrôle de données de l’entreprise d’électricité et viceversa. Cette communication bidirectionnelle est une caractéristique recherchée par un grand nombre d’applications, qui visent à utiliser ces infrastructures comme support à la transmission de leurs données dans le réseau électrique, comme par exemple la gestion de la charge et la demande-réponse. Un grand nombre de technologies et de protocoles de communication sont actuellement utilisés dans les IMAs : parmi les solutions disponibles, le RF-Mesh est une des plus populaires, surtout grâce au bas coût pour l’installation et les équipements. Toutefois, le débit nominal des communications RF-Mesh est très bas, de l’ordre des dizaines de kbps, et la littérature qui traite leur performance est très limitée. Ceci pourrait en limiter l’utilisation pour des applications autres que la lecture à distance des compteurs intelligents. Ce travail de thèse vise à développer un système de modèles et outils pour évaluer la performance des réseaux RF-Mesh et encourager leur utilisation pour un grand nombre d’applications dans le domaine des Smart Grid. Le système d’évaluation de performance proposé est constitué (i) de modèles analytiques, pour calculer la probabilité de collision entre les paquets transmis, (ii) d’un simulateur de réseau, pour recréer le fonctionnement des réseaux RF-Mesh dans un environnement virtuel, (iii) d’un générateur de topologie, pour créer des cas réalistes en se basant sur des données géographiques et (iv) des méthodes pour l’analyse de la performance. Trois différents modèles analytiques ont été implémentés. Dans les deux premiers, une nouvelle formule analytique a été utilisée pour calculer la probabilité de collision entre paquets. La probabilité de collision est ensuite utilisée pour estimer le délai moyen de/vers chaque compteur intelligent dans l’IMA analysée. Par la suite, des indices de performance, basés sur le délai moyen, sont utilisés pour faire des analyses de performance : études de faisabilité pour les applications de Smart Grid, l’identification de noeuds critiques et d’éventuels goulots d’étranglement. Dans le troisième modèle analytique, la théorie de Markov-Modulated System est utilisée pour prendre en considération d’importants détails d’implémentation, comme la probabilité de retransmission et la taille des mémoires tampons des noeuds, qui n’avaient pas été inclus dans la modélisations précédente.----------ABSTRACT Advanced Metering Infrastructure (AMI), originally conceived to replace the old Automated Meter Reading (AMR) infrastructures, have now become a key element in the Smart Grid context and might be used for applications other than remote meter reading. The main driver to their widespread installation is that they provide power utilities with a bidirectional connectivity with the smart meters. A wide variety of communication networks are currently proposed to support the implementation of AMIs, and, among them, the RF-Mesh technology seems to be very popular. The main reasons for its adoption are the proprietary infrastructure and the modest cost for the installation and the equipment. However, RF-Mesh systems are characterized by poor achievable data-rates in the order of 10 kbps, and their performance is not well studied in the literature. The lack of tools and methods for the performance evaluation might be a roadblock to their widespread adoption. This thesis aims at filling this gap and increase the knowledge of large-scale RF-Mesh systems to foster their use for a wide variety of applications. We propose a comprehensive framework for the performance evaluation of large-scale AMIs adopting the RF-Mesh technology. The framework includes (i) a geo-based topology generator that uses geographic data to produce realistic AMI cases, (ii) analytic models for the computation of packet collision probability and delay, (iii) a network simulator to recreate the behavior of large-scale RF-Mesh systems, and (iv) methods to evaluate the performance. Three different analytic models are included in the framework. The first two provide a novel analytic formulation of the packet collision probability in a mesh network with timeslotted ALOHA and the Frequency Hopping Spread Spectrum (FHSS) protocol : the collision probability is then used to estimate the average delay in the network, and to define and evaluate performance indexes (e.g., critical nodes and survival function). In the third model, a complex Markov-Modulated System (MMS) is used to take into consideration important implementation details, such as the retransmission probability and the buffer size, that were not considered in the two previous models. This model also provides a more accurate computation of the packet collision probability. A Poisson distribution is used to represent the traffic coming from potential Smart Grid applications. The framework also includes an RFMesh network simulator, written in Java and Python. The tool provides additional enhanced features with respect to the analytic models, such as a dynamic routing protocol or different traffic distributions
    corecore