65,489 research outputs found

    A kinematically exact finite element formulation of elastic-plastic curved beams

    Get PDF
    A finite element, large displacement formulation of static elastic-plastic analysis of slender arbitrarily curved planar beams is presented. Non-conservative and dynamic loads are sit present not included. The Bernoulli hypothesis of plane cross-sections is assumed and the effect of hear strains is neglected. Exact non-linear kinematic equations of curved beams, derived by Reissner are incorporated into;a generalized principle of virtual work through Lagrangian multipliers. The only function that has to be interpolated in the finite element implementation is the rotation of the centroid axis of a beam. This is an important advantage over other classical displacement approaches since the field consistency problem and related locking phenomena do not arise. Numerical examples, comprising elastic and elastic-plastic, curved and straight beams, at large displacements and rotations, show very nice computational and accuracy characteristics of the present family of finite elements. The comparisons with other published results very clearly show the superior performance of the present elements. (C) 1998 Elsevier Science Ltd. All rights reserved

    Estimation of brain dynamics under visuomotor task using functional connectivity analysis based on graph theory

    Get PDF
    Network studies of brain connectivity have demonstrated that the highly connected area, or hub, is a vital feature of human functional and structural brain organization. Hubs identify which region plays an important role in cognitive/sensorimotor tasks. In addition, a complex visuomotor learning skill causes specific changes of neuronal activation across brain regions. Accordingly, this study utilizes the hub as one of the features to map the visuomotor learning tasks and their dynamic functional connectivity (dFC). The electroencephalogram (EEG) data recorded under three different behavior conditions were investigated: motion only (MO), vision only (VO), and tracking (Tra) conditions. Here, we used the phase locking value (PLV) with a sliding window (50 ms) to calculate the dFC at four distinct frequency bands: 8-12 Hz (alpha), 18-22 Hz (low beta), 26-30 Hz (high beta) and 38-42 Hz (gamma), and the eigenvector centrality to evaluate the hub identification. The Gaussian Mixture Model (GMM) was applied to investigate the dFC patterns. The results showed that the dFC patterns with the hub feature represent the characteristic of neuronal activities under visuomotor coordination

    Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation

    Get PDF
    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles

    Explore the Functional Connectivity between Brain Regions during a Chemistry Working Memory Task.

    Get PDF
    Previous studies have rarely examined how temporal dynamic patterns, event-related coherence, and phase-locking are related to each other. This study assessed reaction-time-sorted spectral perturbation and event-related spectral perturbation in order to examine the temporal dynamic patterns in the frontal midline (F), central parietal (CP), and occipital (O) regions during a chemistry working memory task at theta, alpha, and beta frequencies. Furthermore, the functional connectivity between F-CP, CP-O, and F-O were assessed by component event-related coherence (ERCoh) and component phase-locking (PL) at different frequency bands. In addition, this study examined whether the temporal dynamic patterns are consistent with the functional connectivity patterns across different frequencies and time courses. Component ERCoh/PL measured the interactions between different independent components decomposed from the scalp EEG, mixtures of time courses of activities arising from different brain, and artifactual sources. The results indicate that the O and CP regions' temporal dynamic patterns are similar to each other. Furthermore, pronounced component ERCoh/PL patterns were found to exist between the O and CP regions across each stimulus and probe presentation, in both theta and alpha frequencies. The consistent theta component ERCoh/PL between the F and O regions was found at the first stimulus and after probe presentation. These findings demonstrate that temporal dynamic patterns at different regions are in accordance with the functional connectivity patterns. Such coordinated and robust EEG temporal dynamics and component ERCoh/PL patterns suggest that these brain regions' neurons work together both to induce similar event-related spectral perturbation and to synchronize or desynchronize simultaneously in order to swiftly accomplish a particular goal. The possible mechanisms for such distinct component phase-locking and coherence patterns were also further discussed

    Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL)

    Get PDF
    Experimental results are reported on an optical frequency synthesizer for use in dynamic dense wavelength-division-multiplexing networks, based on a tuneable laser in an optical injection phase-locked loop for rapid wavelength locking. The source combines high stability (50 dB), narrow linewidth (10 MHz), and fast wavelength switching (<10 ns)
    • …
    corecore