12,638 research outputs found

    Diversity gain for DVB-H by using transmitter/receiver cyclic delay diversity

    Get PDF
    The objective of this paper is to investigate different diversity techniques for broadcast networks that will minimize the complexity and improve received SNR of broadcast systems. Resultant digital broadcast networks would require fewer transmitter sites and thus be more cost-effective and have less environmental impact. The techniques can be applied to DVB-T, DVB-H and DAB systems that use Orthogonal Frequency Division Multplexing (OFDM). These are key radio broadcast network technologies, which are expected to complement emerging technologies such as WiMAX and future 4G networks for delivery of broadband content. Transmitter and receiver diversity technologies can increase the frequency and time selectivity of the resulting channel transfer function at the receiver. Diversity exploits the statistical nature of fading due to multipath and reduces the likelihood of deep fading by providing a diversity of transmission signals. Multiple signals are transmitted in such a way as to ensure that several signals reach the receiver each with uncorrelated fading. Transmit diversity is more practical than receive diversity due to the difficulty of locating two receive antennas far enough apart in a small mobile device. The schemes examined here comply with existing DVB standards and can be incorporated into existing systems without change. The diversity techniques introduced in this paper are applied to the DVB-H system. Bit error performance investigations were conducted by simulation for different DVB-H and diversity parameters

    Analysis of DVB-H network coverage with the application of transmit diversity

    Get PDF
    This paper investigates the effects of the Cyclic Delay Diversity (CDD) transmit diversity scheme on DVB-H networks. Transmit diversity improves reception and Quality of Service (QoS) in areas of poor coverage such as sparsely populated or obscured locations. The technique not only povides robust reception in mobile environments thus improving QoS, but it also reduces network costs in terms of the transmit power, number of infrastructure elements, antenna height and the frequency reuse factor over indoor and outdoor environments. In this paper, the benefit and effectiveness of CDD transmit diversity is tackled through simulation results for comparison in several scenarios of coverage in DVB-H networks. The channel model used in the simulations is based on COST207 and a basic radio planning technique is used to illustrate the main principles developed in this paper. The work reported in this paper was supported by the European Commission IST project—PLUTO (Physical Layer DVB Transmission Optimization)

    OTFS-NOMA: An Efficient Approach for Exploiting Heterogenous User Mobility Profiles

    Get PDF
    This paper considers a challenging communication scenario, in which users have heterogenous mobility profiles, e.g., some users are moving at high speeds and some users are static. A new non-orthogonal multiple-access (NOMA) transmission protocol that incorporates orthogonal time frequency space (OTFS) modulation is proposed. Thereby, users with different mobility profiles are grouped together for the implementation of NOMA. The proposed OTFS-NOMA protocol is shown to be applicable to both uplink and downlink transmission, where sophisticated transmit and receive strategies are developed to remove inter-symbol interference and harvest both multi-path and multi-user diversity. Analytical results demonstrate that both the high-mobility and low-mobility users benefit from the application of OTFS-NOMA. In particular, the use of NOMA allows the spreading of the high-mobility users' signals over a large amount of time-frequency resources, which enhances the OTFS resolution and improves the detection reliability. In addition, OTFS-NOMA ensures that low-mobility users have access to bandwidth resources which in conventional OTFS-orthogonal multiple access (OTFS-NOMA) would be solely occupied by the high-mobility users. Thus, OTFS-NOMA improves the spectral efficiency and reduces latency

    Analysis of cyclic delay diversity on DVB-H systems over spatially correlated channel

    Get PDF
    The objective of this work is to research and analyze the performance of Cyclic Delay Diversity (CDD) with two transmit antenna on DVB-H systems operating in spatially correlated channel. It is shown in this paper that CDD can achieve desirable transmit diversity gain over uncorrelated channel with or without receiver diversity. However, in reality, the respective signal paths between spatially separated antennas and the mobile receiver is likely to be correlated because of insufficient antenna separation at the transmitter and the lack of scattering effect of the channel. Under this spatially correlated channel, it is apparent that CDD cannot achieve the same diversity gain as obtained under the uncorrelated channel. In this paper, a new upper bound on the pairwise error probability (PEP) of the CDD with spatial correlation of two transmit antennas is derived. The upper bound is used to study the CDD theoretical error performance and diversity gain losses over a generalized spatially correlated Rayleigh channel. This theoretical analysis is validated by the simulation of DVB-H systems with two transmit antennas and the CDD scheme. Both the theoretical and simulated results give the valuable insight that the CDD ability to perform well with a certain amount of channel correlation
    corecore