987 research outputs found

    Development of a dc-ac power conditioner for wind generator by using neural network

    Get PDF
    This project present of development single phase DC-AC converter for wind generator application. The mathematical model of the wind generator and Artificial Neural Network control for DC-AC converter is derived. The controller is designed to stabilize the output voltage of DC-AC converter. To verify the effectiveness of the proposal controller, both simulation and experimental are developed. The simulation and experimental result show that the amplitude of output voltage of the DC-AC converter can be controlled

    Full duplex 60 GHz millimeter wave transmission over multi-mode fiber

    Get PDF
    Copyright @ 2010 IEEENew wireless subscribers are signing up at an increasing demand of more capacity for ultra-high data rate transfers at speeds more than 1 Gbps, while the radio spectrum is limited. Millimeter wave communication system offers a unique way to resolve these problems. In this paper, the performance of a full duplex transportation system is reported for 1.5 Km of multi-mode fiber length for a sample 10 Gbit/s pseudo random sequence data, with quadrature amplitude modulation mapping and orthogonal frequency division multiplexing modulation with 60 GHz RF and coherent 1550 nm optical carrier. The analysis and simulation results show that the system's quality of service depends on nonlinearity of electro optical modulator, dispersion and signal attenuation impairment of the multi-mode fiber cable

    A Full-Duplex Diversity-Assisted Hybrid Analogue/Digitized Radio Over Fibre for Optical/Wireless Integration

    No full text
    A duplex Radio Over Fibre (ROF) ring architecture is proposed taking into account the constraints imposed by the cost of fibre laying and of the optical/electronic components, as well as the spectral efficiency and the duplex link performance. It has been shown that relying on Analogue ROF (AROF) and state-of-the-art Digitized ROF (DROF) architectures for downlink and uplink transmission, respectively, attains a high-integrity duplex performance. A sophisticated amalgam of Optical Carrier Suppression (OCS), Code Division Multiplexing (CDM), optical frequency multiplexing, Optical Carrier Reuse (OCR) and distributed antennas is conceived

    Super-Broadband Wireless Access Network

    Get PDF

    Software Defined Radio Implementation of Carrier and Timing Synchronization for Distributed Arrays

    Full text link
    The communication range of wireless networks can be greatly improved by using distributed beamforming from a set of independent radio nodes. One of the key challenges in establishing a beamformed communication link from separate radios is achieving carrier frequency and sample timing synchronization. This paper describes an implementation that addresses both carrier frequency and sample timing synchronization simultaneously using RF signaling between designated master and slave nodes. By using a pilot signal transmitted by the master node, each slave estimates and tracks the frequency and timing offset and digitally compensates for them. A real-time implementation of the proposed system was developed in GNU Radio and tested with Ettus USRP N210 software defined radios. The measurements show that the distributed array can reach a residual frequency error of 5 Hz and a residual timing offset of 1/16 the sample duration for 70 percent of the time. This performance enables distributed beamforming for range extension applications.Comment: Submitted to 2019 IEEE Aerospace Conferenc

    Transmission of OFDM wired-wireless quintuple-play services along WDM LR-PONs using centralized broadband impairment compensation

    Full text link
    This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.20.013748 . Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] The simultaneous transmission of four orthogonal frequencydivision multiplexing (OFDM)-based signals used to provide quintuple-play services along wavelength division multiplexing (WDM) long-reach passive optical networks (LR-PONs) is demonstrated experimentally. Particularly, the transmission performance of custom signal bearing Gigabit Ethernet data, Worldwide Interoperability for Microwave Access, Long Term Evolution and Ultra Wideband (sub-bands 2 and 3) signals is evaluated for different LR-PONs reaches, considering single-wavelength andWDMtransmission, and using a centralized impairment compensation technique at the central office that is transparent to the services provided. It is shown that error vector magnitude-compliant levels are obtained for all the OFDM-based signals in WDM LR-PONs reaching 100 km and that negligible inter-channel crosstalk is obtained for a channel spacing of 100 GHz regardless the OFDM-based signal considered. The successful multi-format OFDM transmission along the 100 km-long WDM LR-PON is achieved in the absence of optical dispersion compensation or single sideband modulation, and it is enabled by the performance improvement provided by the centralized impairment compensation realized. © 2012 Optical Society of America.M. Morant's work was supported by FPU-MEC grant AP2007-01413. This work was also supported in part by the European FIVER-FP7-ICT-2009-4-249142 project and by Fundacao para a Ciencia e a Tecnologia from Portugal under the TURBO-PTDC/EEA-TEL/104358/2008 project.Alves, T.; Morant PĂ©rez, M.; Cartaxo, A.; Llorente SĂĄez, R. (2012). Transmission of OFDM wired-wireless quintuple-play services along WDM LR-PONs using centralized broadband impairment compensation. Optics Express. 20(13):13748-13761. https://doi.org/10.1364/OE.20.013748S13748137612013Jia, Z., Yu, J., Ellinas, G., & Chang, G.-K. (2007). Key Enabling Technologies for Optical–Wireless Networks: Optical Millimeter-Wave Generation, Wavelength Reuse, and Architecture. Journal of Lightwave Technology, 25(11), 3452-3471. doi:10.1109/jlt.2007.909201Armstrong, J. (2009). OFDM for Optical Communications. Journal of Lightwave Technology, 27(3), 189-204. doi:10.1109/jlt.2008.2010061Cvijetic, N. (2012). OFDM for Next-Generation Optical Access Networks. Journal of Lightwave Technology, 30(4), 384-398. doi:10.1109/jlt.2011.2166375Shieh, W., & Athaudage, C. (2006). Coherent optical orthogonal frequency division multiplexing. Electronics Letters, 42(10), 587. doi:10.1049/el:20060561Alves, T., Morant, M., Cartaxo, A., & Llorente, R. (2011). Performance Comparison of OFDM-UWB Radio Signals Distribution in Long-Reach PONs Using Mach-Zehnder and Linearized Modulators. IEEE Journal on Selected Areas in Communications, 29(6), 1311-1320. doi:10.1109/jsac.2011.110618Llorente, R., Alves, T., Morant, M., Beltran, M., Perez, J., Cartaxo, A., & Marti, J. (2008). Ultra-Wideband Radio Signals Distribution in FTTH Networks. IEEE Photonics Technology Letters, 20(11), 945-947. doi:10.1109/lpt.2008.922329Alves, T., & Cartaxo, A. (2011). Distribution of Double-Sideband OFDM-UWB Radio Signals in Dispersion Compensated Long-Reach PONs. Journal of Lightwave Technology, 29(16), 2467-2474. doi:10.1109/jlt.2011.2160616Chow, C.-W., Yeh, C.-H., Wang, C.-H., Shih, F.-Y., Pan, C.-L., & Chi, S. (2008). WDM extended reach passive optical networks using OFDM-QAM. Optics Express, 16(16), 12096. doi:10.1364/oe.16.012096Tang, J. M., Lane, P. M., & Shore, K. A. (2006). Transmission performance of adaptively modulated optical OFDM signals in multimode fiber links. IEEE Photonics Technology Letters, 18(1), 205-207. doi:10.1109/lpt.2005.861631Duong, T.-N., Genay, N., Ouzzif, M., Le Masson, J., Charbonnier, B., Chanclou, P., & Simon, J. C. (2009). Adaptive Loading Algorithm Implemented in AMOOFDM for NG-PON System Integrating Cost-Effective and Low-Bandwidth Optical Devices. IEEE Photonics Technology Letters, 21(12), 790-792. doi:10.1109/lpt.2009.2016978Alves, T., & Cartaxo, A. (2009). Performance Degradation Due to OFDM-UWB Radio Signal Transmission Along Dispersive Single-Mode Fiber. IEEE Photonics Technology Letters, 21(3), 158-160. doi:10.1109/lpt.2008.200923

    Radio over fiber enabling PON fronthaul in a two-tiered cloud

    Get PDF
    Avec l’avĂšnement des objets connectĂ©s, la bande passante nĂ©cessaire dĂ©passe la capacitĂ© des interconnections Ă©lectriques et interface sans fils dans les rĂ©seaux d’accĂšs mais aussi dans les rĂ©seaux coeurs. Des systĂšmes photoniques haute capacitĂ© situĂ©s dans les rĂ©seaux d’accĂšs utilisant la technologie radio sur fibre systĂšmes ont Ă©tĂ© proposĂ©s comme solution dans les rĂ©seaux sans fil de 5e gĂ©nĂ©rations. Afin de maximiser l’utilisation des ressources des serveurs et des ressources rĂ©seau, le cloud computing et des services de stockage sont en cours de dĂ©ploiement. De cette maniĂšre, les ressources centralisĂ©es pourraient ĂȘtre diffusĂ©es de façon dynamique comme l’utilisateur final le souhaite. Chaque Ă©change nĂ©cessitant une synchronisation entre le serveur et son infrastructure, une couche physique optique permet au cloud de supporter la virtualisation des rĂ©seaux et de les dĂ©finir de façon logicielle. Les amplificateurs Ă  semi-conducteurs rĂ©flectifs (RSOA) sont une technologie clĂ© au niveau des ONU(unitĂ© de communications optiques) dans les rĂ©seaux d’accĂšs passif (PON) Ă  fibres. Nous examinons ici la possibilitĂ© d’utiliser un RSOA et la technologie radio sur fibre pour transporter des signaux sans fil ainsi qu’un signal numĂ©rique sur un PON. La radio sur fibres peut ĂȘtre facilement rĂ©alisĂ©e grĂące Ă  l’insensibilitĂ© a la longueur d’onde du RSOA. Le choix de la longueur d’onde pour la couche physique est cependant choisi dans les couches 2/3 du modĂšle OSI. Les interactions entre la couche physique et la commutation de rĂ©seaux peuvent ĂȘtre faites par l’ajout d’un contrĂŽleur SDN pour inclure des gestionnaires de couches optiques. La virtualisation rĂ©seau pourrait ainsi bĂ©nĂ©ficier d’une couche optique flexible grĂące des ressources rĂ©seau dynamique et adaptĂ©e. Dans ce mĂ©moire, nous Ă©tudions un systĂšme disposant d’une couche physique optique basĂ© sur un RSOA. Celle-ci nous permet de façon simultanĂ©e un envoi de signaux sans fil et le transport de signaux numĂ©rique au format modulation tout ou rien (OOK) dans un systĂšme WDM(multiplexage en longueur d’onde)-PON. Le RSOA a Ă©tĂ© caractĂ©risĂ© pour montrer sa capacitĂ© Ă  gĂ©rer une plage dynamique Ă©levĂ©e du signal sans fil analogique. Ensuite, les signaux RF et IF du systĂšme de fibres sont comparĂ©s avec ses avantages et ses inconvĂ©nients. Finalement, nous rĂ©alisons de façon expĂ©rimentale une liaison point Ă  point WDM utilisant la transmission en duplex intĂ©gral d’un signal wifi analogique ainsi qu’un signal descendant au format OOK. En introduisant deux mĂ©langeurs RF dans la liaison montante, nous avons rĂ©solu le problĂšme d’incompatibilitĂ© avec le systĂšme sans fil basĂ© sur le TDD (multiplexage en temps duplexĂ©).With the advent of IoT (internet of things) bandwidth requirements triggered by aggregated wireless connections have exceeded the fundamental limitation of copper and microwave based wireless backhaul and fronthaul networks. High capacity photonic fronthaul systems employing radio over fiber technology has been proposed as the ultimate solution for 5G wireless system. To maximize utilization of server and network resources, cloud computing and storage based services are being deployed. In this manner, centralized resources could be dynamically streamed to the end user as requested. Since on demand resource provision requires the orchestration between the server and network infrastructure, a smart photonic (physical layer)PHY enabled cloud is foreseen to support network virtualization and software defined network. RSOAs (Reflective Semiconductor Optical Amplifier) are being investigated as key enablers of the colorless ONU(Optical Network Unit) solution in PON (Passive Optical Network). We examine the use of an RSOA in radio over fiber systems to transport wireless signals over a PON simultaneously with digital data. Radio over fiber systems with flexible wavelength allocation could be achieved thanks to the colorless operation of the RSOA and wavelength reuse technique. The wavelength flexibility in optical PHY are inline with the paradigm of software defined network (SDN) in OSI layer 2/3. The orchestration between optical PHY and network switching fabric could be realized by extending the SDN controller to include optical layer handlers. Network virtualization could also benefit from the flexible optical PHY through dynamic and tailored optical network resource provision. In this thesis, we investigate an optical PHY system based on RSOA enabling both analog wireless signal and digital On-Off Keying (OOK) transportation within WDM (Wavelength Division Multiplexing) PON architecture. The RSOA has been characterized to show its potential ability to handle high dynamic range analog wireless signal. Then the RF and IF radio over fiber scheme is compared with its pros and cons. Finally we perform the experiment to shown a point to point WDM link with full duplex transmission of analog WiFi signal with downlink OOK signal. By introducing two RF mixer in the uplink, we have solved the incompatible problem with TDD (Time Division Duplex) based wireless system

    GaN-Based Micro-LED Visible Light Communication: Line-of-Sight VLC with Active Tracking and None-Line-of-Sight VLC Demonstration

    Get PDF
    abstract: Visible light communication (VLC) is the promise of a high data rate wireless network for both indoor and outdoor uses. It competes with 5G radio frequency (RF) system as well. Even though the breakthrough of Gallium Nitride (GaN) based micro-light-emitting-diodes (micro-LEDs) enhances the -3dB modulation bandwidth dramatically from tens of MHz to hundreds of MHz, the optical power onto a fast photo receiver drops exponentially. It determines the signal to noise ratio (SNR) of VLC. For full implementation of the useful high data-rate VLC link enabled by a GaN-based micro-LED, it needs focusing optics and a tracking system. In this dissertation, we demonstrate a novel active on-chip monitoring system for VLC using a GaN-based micro-LED and none-return-to-zero on-off keying (NRZ-OOK) modulation scheme. By this innovative technique without manual focusing, the field of view (FOV) was enlarged to 120° and data rates up to 600 Mbps at a bit error rate (BER) of 2.1×10⁻⁎ were achieved. This work demonstrates the establishment of a VLC physical link. It shows improved communication quality by orders, making it optimized for real communications. This dissertation also gives an experimental demonstration of non-line-of-sight (NLOS) visible light communication (VLC) using a single 80 ÎŒm gallium nitride (GaN) based micro-light-emitting diode (micro-LED). IEEE 802.11ac modulation scheme with 80 MHz bandwidth, as an entry level of the fifth generation of Wi-Fi, was employed to use the micro-LED bandwidth efficiently. These practical techniques were successfully utilized to achieve a demonstration of line-of-sight (LOS) VLC at a speed of 433 Mbps, and a bit error rate (BER) of 10⁻⁔ with a free space transmit distance 3.6 m. Besides this, we demonstrated directed NLOS VLC links based on mirror reflections with a data rate of 433 Mbps and a BER of 10⁻⁎. For non-directed NLOS VLC using a print paper as the reflective material, 195 Mbps data rate and a BER of 10⁻⁔ was achieved.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Mode-division-multiplexing of multiple Bessel-Gaussian beams carrying orbital-angular-momentum for obstruction-tolerant free-space optical and millimetre-wave communication links

    Get PDF
    We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively
    • 

    corecore