150 research outputs found

    Performance Study of Hybrid Spread Spectrum Techniques

    Get PDF
    This thesis focuses on the performance analysis of hybrid direct sequence/slow frequency hopping (DS/SFH) and hybrid direct sequence/fast frequency hopping (DS/FFH) systems under multi-user interference and Rayleigh fading. First, we analyze the performance of direct sequence spread spectrum (DSSS), slow frequency hopping (SFH) and fast frequency hopping (FFH) systems for varying processing gains under interference environment assuming equal bandwidth constraint with Binary Phase Shift Keying (BPSK) modulation and synchronous system. After thorough literature survey, we show that hybrid DS/FFH systems outperform both SFH and hybrid DS/SFH systems under Rayleigh fading and multi-user interference. Also, both hybrid DS/SFH and hybrid DS/FFH show performance improvement with increasing spreading factor and decreasing number of hopping frequencies

    Multicarrier Frequency Hopping Spread Spectrum Techniques With Quasi-Cyclic Low Density Parity Check Codes Channel Coding

    Get PDF
    This work presents a new proposed Multicarrier Frequency Hopping Spread Spectrum (MCFH-SS) system employing Quasi-Cyclic Low Density Parity Check (QC-LDPC) codes instead of the conventional LDPC codes. A new technique for constructing the QC-LDPC codes based on row division method is proposed. The new codes offer more flexibility in terms of high girth, multiple code rates and block length. Moreover, a new scheme for channel prediction in MCFH-SS system is proposed. The technique adaptively estimates the channel conditions and eliminates the need for the system to transmit a request message prior to transmitting the packet data. The ready-to-use channel will be occupied with a Pseudonoise (PN) code and use for transmission or else, it will be banned

    Performance analysis of FFH/BPSK receivers with convolutional coding and soft decision Viterbi decoding over channels with partial-band noise interference

    Get PDF
    An analysis of the performance of a binary phase shift keying (BPSK) communication system employing fast frequency hopped (FFH) spread spectrum modulation under conditions of hostile partial band noise interference is performed in this thesis. The data are assumed to be encoded using convolutional coding and the receivers are assumed to use soft decision Viterbi decoding. The receiver structures to be examined are the conventional FFH/BPSK receiver with diversity the conventional FFH/BPSK receiver with diversity and the assumption of perfect side information and the noise normalized FFH/BPSK combining receiver with diversity. The FFH/BPSK noise normalized receiver with diversity minimizes the effects of hostile partial band noise interference and alleviates the effects of fading. The effect of inaccurate measurement of the noise power present in each hop is also examined and it is found that noise measurement error does not significantly degrade receiver performance. For the conventional FFH/BPSK receiver with perfect side information the effect of a Ricean fading channel is also examined.http://archive.org/details/performancenalys1094532141NAHellenic Navy authorApproved for public release; distribution is unlimited

    Comparison of Bit Error Rate and Power Spectral Density on the Ultra Wideband Impulse Radio Systems

    Get PDF
    Ultra-Wideband (UWB) is defined as a wireless transmission scheme that occupies a bandwidth of more than 25% of its center frequency. UWB Impulse Radio (UWB-IR) is a popular implementation of the UWB technology. In UWB-IR, information is encoded in baseband without any carrier modulation. Pulse shaping and baseband modulation scheme are two of the determinants on the performance of the UWB-IR. In this thesis, both temporal and spectral characteristics of the UWB-IR are examined because all radio signals exist in both the time and frequency domains. Firstly, the bit error rate (BER) performance of the UWB-IR is investigated via simulation using three modulation schemes: Pulse position modulation (PPM), on-off shift keying (OOK), and binary phase shift keying (BPSK). The results are verified for three different pulse shaping named Gaussian first derivative, Gaussian second derivative, and return-to-zero (RZ) Manchester. Secondly, the effects of the UWB-IR parameters on the power spectral density (PSD) are investigated because PSD provides information on how the power is distributed over the radio frequency (RF) spectrum and determines the interference of UWB-IR and the existing systems to each other in the spectrum. The investigated UWB-IR parameters include pulse duration, pulse repetition rate, modulation scheme, and pseudorandom codes

    Orthogonal multicarrier modulation for high-rates mobile and wireless communications

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN037085 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Joint Detection and Decoding of High-Order Modulation Schemes for CDMA and OFDM Wireless Communications

    Get PDF
    Wireless communications call for high data rate, power and bandwidth efficient transmissions. High-order modulation schemes are suitable candidates for this purpose as the potential to reduce the symbol period is often limited by the multipath-induced intersymbol interference. In order to reduce the power consumption, and at the same time, to estimate time-variant wireless channels, we propose low-complexity, joint detection and decoding schemes for high-order modulation signals in this dissertation. We start with the iterative demodulation and decoding of high-order CPM signals for mobile communications. A low complexity, pilot symbol-assisted coherent modulation scheme is proposed that can significantly improve the bit error rate performance by efficiently exploiting the inherent memory structure of the CPM modulation. A noncoherent scheme based on multiple symbol differential detection is also proposed and the performances of the two schemes are simulated and compared. Second, two iterative demodulation and decoding schemes are proposed for quadrature amplitude modulated signals in flat fading channels. Both of them make use of the iterative channel estimation based on the data signal reconstructed from decoder output. The difference is that one of them has a threshold controller that only allows the data reconstructed with high reliability values to be used for iterative channel estimation, while the other one directly uses all reconstructed data. As the second scheme has much lower complexity with a performance similar to the best of the first one, we further apply it to the space-time coded CDMA Rake receiver in frequency-selective multipath channels. We will compare it to the pilot-aided demodulation scheme that uses a dedicated pilot signal for channel estimation. In the third part of the dissertation, we design anti-jamming multicarrier communication systems. Two types of jamming signals are considered - the partial-band tone jamming and the partial-time pulse jamming. We propose various iterative schemes to detect, estimate, and cancel the jamming signal in both AWGN and fading channels. Simulation results demonstrate that the proposed systems can provide reliable communications over a wide range of jamming-to-signal power ratios. Last, we study the problem of maximizing the throughput of a cellular multicarrier communication network with transmit or receive diversity. The total throughput of the network is maximized subject to power constraints on each mobile. We first extend the distributed water-pouring power control algorithm from single transmit and receive antenna to multiple transmit and receive antennas. Both equal power diversity and selective diversity are considered. We also propose a centralized power control algorithm based on the active set strategy and the gradient projection method. The performances of the two algorithms are assessed with simulation and compared with the equal power allocation algorithm

    Low-complexity iterative detection techniques for Slow-Frequency-Hop spread-spectrum communications with Reed-Solomon coding.

    Get PDF
    Slow-frequency-hop (SFH) spread-spectrum communications provide a high level of robustness in packet-radio networks for both military and commercial applications. The use of a Reed-Solomon (R-S) code has proven to be a good choice for use in a SFH system for countering the critical channel impairments of partial-band fading and partial-band interference. In particular, it is effective when reliability information of dwell intervals and individual code symbols can be obtained and errors-and-erasures decoding (EE) can be employed at the receiver. In this dissertation, we consider high-data-rate SFH communications for which the channel in each frequency slot is frequency selective, manifesting itself as intersymbol interference (ISI) at the receiver. The use of a packet-level iterative equalization and decoding technique is considered in conjunction with a SFH system employing R-S coding. In each packet-level iteration, MLSE equalization followed by bounded distance EE decoding is used in each dwell interval. Several per-dwell interleaver designs are considered for the SFH systems and it is shown that packet-level iterations result in a significant improvement in performance with a modest increase in detection complexity for a variety of ISI channels. The use of differential encoding in conjunction with the SFH system and packet-level iterations is also considered, and it is shown to provide further improvements in performance with only a modest additional increase in detection complexity. SFH systems employing packet-level iterations with and without differential encoding are evaluated for channels with partial-band interference. Comparisons are made between the performance of this system and the performance of SFH systems using some other codes and iterative decoding techniques

    Spectrum Sensing and Security Challenges and Solutions: Contemporary Affirmation of the Recent Literature

    Get PDF
    Cognitive radio (CR) has been recently proposed as a promising technology to improve spectrum utilization by enabling secondary access to unused licensed bands. A prerequisite to this secondary access is having no interference to the primary system. This requirement makes spectrum sensing a key function in cognitive radio systems. Among common spectrum sensing techniques, energy detection is an engaging method due to its simplicity and efficiency. However, the major disadvantage of energy detection is the hidden node problem, in which the sensing node cannot distinguish between an idle and a deeply faded or shadowed band. Cooperative spectrum sensing (CSS) which uses a distributed detection model has been considered to overcome that problem. On other dimension of this cooperative spectrum sensing, this is vulnerable to sensing data falsification attacks due to the distributed nature of cooperative spectrum sensing. As the goal of a sensing data falsification attack is to cause an incorrect decision on the presence/absence of a PU signal, malicious or compromised SUs may intentionally distort the measured RSSs and share them with other SUs. Then, the effect of erroneous sensing results propagates to the entire CRN. This type of attacks can be easily launched since the openness of programmable software defined radio (SDR) devices makes it easy for (malicious or compromised) SUs to access low layer protocol stacks, such as PHY and MAC. However, detecting such attacks is challenging due to the lack of coordination between PUs and SUs, and unpredictability in wireless channel signal propagation, thus calling for efficient mechanisms to protect CRNs. Here in this paper we attempt to perform contemporary affirmation of the recent literature of benchmarking strategies that enable the trusted and secure cooperative spectrum sensing among Cognitive Radios
    corecore