52 research outputs found

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    Performance analysis of wireless relay systems

    Get PDF
    There has been phenomenal interest in applying space-time coding techniques in wireless communications in the last two decades. In general, the benefit of applying space-time codes in multiple-input, multiple-output (MIMO) wireless channels is an increase in transmission reliability or system throughput (capacity). However, such a benefit cannot be obtained in some wireless systems where size or other constraints preclude the use of multiple antennas. As such, wireless relay communications has recently been proposed as a means to provide spatial diversity in the face of this limitation. In this approach, some users or relay nodes assist the transmission of other usersā€™ information. This dissertation contributes to the advancement of wireless relay communications by investigating the performance of various relaying signal processing methods under different practical fading environments. In particular, it examines two main relaying methods, namely decode-and-forward (DF) and amplify-and-forward (AF). For DF, the focus is on the diversity analysis of relaying systems under various practical protocols when detection error at relays is taken into account. In order to effectively mitigate the phenomenon of error propagation, the smart relaying technique proposed by Wang et al. in [R1] is adopted. First, diversity analysis of a single-relay system under the scenario that only the relay is allowed to transmit in the second time slot (called Protocol II) is carried out. For Nakagami and Hoyt generalized fading channels, analytical and numerical results are provided to demonstrate that the system always obtains the maximal diversity when binary phase shift keying (BPSK) modulation is used. Second, a novel and low-complexity relaying system is proposed when smart relaying and equal gain combing (EGC) techniques are combined. In the proposed system, the destination requires only the phases of the channel state information in order to detect the transmitted signals. For the single-relay system with M-ary PSK modulation, it is shown that the system can achieve the maximal diversity under Nakagami and Hoyt fading channels. For the K-relay system, simulation results suggest that the maximal diversity can also be achieved. Finally, the diversity analysis for a smart relaying system under the scenario when both the source and relay are permitted to transmit in the second time slot (referred to as Protocol I) is presented. It is shown that Protocol I can achieve the same diversity order as Protocol II for the case of 1 relay. In addition, the diversity is very robust to the quality of the feedback channel as well as the accuracy of the quantization of the power scaling implemented at the relay. For AF, the dissertation considers a fixed-gain multiple-relay system with maximal ratio combining (MRC) detection at the destination under Nakagami fading channels. Different from the smart relaying for DF, all the channel state information is assumed to be available at the destination in order to perform MRC for any number of antennas. Upperbound and lowerbound on the system performance are then derived. Based on the bounds, it is shown that the system can achieve the maximal diversity. Furthermore, the tightness of the upperbound is demonstrated via simulation results. With only the statistics of all the channels available at the destination, a novel power allocation (PA) is then proposed. The proposed PA shows significant performance gain over the conventional equal PA

    Performance Analysis of the Differential Evolution and Particle Swarm Optimization Algorithms in Cooperative Wireless Communications

    Get PDF
    In this study, we evaluate the performance of differential evolution (DE) and particle swarm optimization (PSO) algorithms in free-space optical (FSO) and mobile radio communications systems. In particular, we obtain the optimal transmission distances for multiple-relay nodes in FSO communication systems and optimal relay locations in mobile radio communications systems for the cooperative-diversity networks, using both algorithms. We investigate the performance comparison of DE and PSO algorithms for the parallel decode-and-forward (DF) relaying. Then, we analyze the cost functions. Furthermore, we present the execution time and the stability of the DE and PSO algorithms

    Performance of MIMO Relay DCSK-CD Systems over Nakagami Fading Channels

    Full text link
    A multi-access multiple-input multiple-output (MIMO) relay differential chaos shift keying cooperative diversity (DCSK-CD) system is proposed in this paper as a comprehensive cooperation scheme, in which the relay and destination both employ multiple antennas to strengthen the robustness against signal fading in a wireless network. It is shown that, with spatial diversity gains, the bit error rate (BER) performance of the proposed system is remarkably better than the conventional DCSK non-cooperation (DCSK-NC) and DCSK cooperative communication (DCSK-CC) systems. Moreover, the exact BER and close-form expressions of the proposed system are derived over Nakagami fading channels through the moment generating function (MGF), which is shown to be highly consistent with the simulation results. Meanwhile, this paper illustrates a trade-off between the performance and the complexity, and provides a threshold for the number of relay antennas keeping the user consumed energy constant. Due to the above-mentioned advantages, the proposed system stands out as a good candidate or alternative for energy-constrained wireless communications based on chaotic modulation, especially for low-power and low-cost wireless personal area networks (WPANs).Comment: 11 pages, 15 figures. IEEE Transactions on Circuits and System-

    Applications of Stochastic Ordering to Wireless Communications

    Full text link
    Stochastic orders are binary relations defined on probability distributions which capture intuitive notions like being larger or being more variable. This paper introduces stochastic ordering of instantaneous SNRs of fading channels as a tool to compare the performance of communication systems over different channels. Stochastic orders unify existing performance metrics such as ergodic capacity, and metrics based on error rate functions for commonly used modulation schemes through their relation with convex, and completely monotonic (c.m.) functions. Toward this goal, performance metrics such as instantaneous error rates of M-QAM and M-PSK modulations are shown to be c.m. functions of the instantaneous SNR, while metrics such as the instantaneous capacity are seen to have a completely monotonic derivative (c.m.d.). It is shown that the commonly used parametric fading distributions for modeling line of sight (LoS), exhibit a monotonicity in the LoS parameter with respect to the stochastic Laplace transform order. Using stochastic orders, average performance of systems involving multiple random variables are compared over different channels, even when closed form expressions for such averages are not tractable. These include diversity combining schemes, relay networks, and signal detection over fading channels with non-Gaussian additive noise, which are investigated herein. Simulations are also provided to corroborate our results.Comment: 25 pages, 10 figures, Submitted to the IEEE transactions on wireless communication

    On the performance of a mixed RF/MIMO FSO variable gain dual-hop transmission system

    Get PDF
    In this work, we propose a mixed radio frequency (RF) and multiple-input-multiple-output (MIMO) free-space optical (FSO) system based on a variable-gain dual-hop relay transmission scheme. The RF channel is modeled by Rayleigh distribution and Gammaā€“Gamma turbulence distribution is adopted for the MIMO FSO link, which accounts for the equal gain combining diversity technique. Moreover, new closed-form mathematical formulas are obtained including the cumulative distribution function, probability density function, moment generating function, and moments of equivalent signal-to-noise ratio of the dual-hop relay system based on Meijerā€™s G function. As such, we derive the novel analytical expressions of the outage probability, the higher-order fading, and the average bit error rate for a range of modulations in terms of Meijerā€™s G function. Furthermore, the exact closed-form formula of the ergodic capacity is derived based on the bivariate Meijerā€™s G function. The evaluation and simulation are provided for system performance, and the effect of spatial diversity technique is discussed as well

    Accurate Closed-Form Approximations for the BER of Multi-Branch Amplify-and-Forward Cooperative Systems with MRC in Rayleigh Fading Channels

    Get PDF
    Abstract: -Relay-based cooperative systems have recently attracted significant attention since they enable exploiting the inherent spatial diversity of wireless networks with single antenna terminals. In this paper, the authors address the error performance of a cooperative diversity network consisting of a source, a destination, and multiple dual-hop amplify-and-forward (AF) relays in Rayleigh fading channels, in which the source broadcasts the signal to the relays in the first time slot and the relays simultaneously forward signals to the destination in the second time slot. Analytically studying the error performance of multiple dual-hop AF cooperative networks with maximal ratio combining (MRC) receivers at the destination and deriving closedform expressions has always been a difficult task. Considering an L-Relay nodes AF cooperative network in Rayleigh fading channels employing MRC, closed-form approximate expressions are derived for the bit error rate (BER) of a class of coherent modulation techniques that are easy to calculate, thus circumventing the computational inefficiency of the exact formulation. Exact results obtained using numerical integration are provided to validate the tightness of the proposed expressions. In addition, a slight modification for the amplification gain at the relay-node is proposed, which showed an improvement in the effective signal-to-noise ratio at the destination node

    Performance Analysis, Resource Allocation and Optimization of Cooperative Communication Systems under Generalized Fading Channels

    Get PDF
    The increasing demands for high-speed data transmission, efficient wireless access, high quality of service (QoS) and reliable network coverage with reduced power consumption impose demanding intensive research efforts on the design of novel wireless communication system architectures. A notable development in the area of communication theory is the introduction of cooperative communication systems. These technologies become promising solution for the next-generation wireless transmission systems due to their applicability in size, power, hardware and price constrained devices, such as cellular mobile devices, wireless sensors, ad-hoc networks and military communications, being able to provide, e.g., diversity gain against fading channels without the need for installing multiple antennas in a single terminal. The performance of the cooperative systems can in general be signiļ¬cantly increased by allocating the limited power efficiently. In this thesis, we address in detail the performance analysis, resource allocation and optimization of such cooperative communication systems under generalized fading channels. We focus ļ¬rst on energy-efficiency (EE) optimization and optimal power allocation (OPA) of regenerative cooperative network with spatial correlation effects under given power constraint and QoS requirement. The thesis also investigates the end-to-end performance and power allocation of a regenerative multi-relay cooperative network over non-homogeneous scattering environment, which is realistic case in practical wireless communication scenarios. Furthermore, the study investigates the end-to-end performance, OPA and energy optimization analysis under total power constraint and performance requirement of full-duplex (FD) relaying transmission scheme over asymmetric generalized fading models with relay self-interference (SI) effects.The study ļ¬rst focuses on exact error analysis and EE optimization of regenerative relay systems under spatial correlation effects. It ļ¬rst derives novel exact and asymptotic expressions for the symbol-error-rates (SERs) of M -ary quadrature amplitude and M -ary phase-shift keying (M -QAM) and (M -PSK) modulations, respectively, assuming a dual-hop decode-and-forward relay system, spatial correlation, path-loss effects and maximum-ratio-combing (MRC) at the destination. Based on this, EEoptimization and OPA are carried out under certain QoS requirement and transmit power constraints.Furthermore, the second part of the study investigates the end-to-end performance and power allocation of MRC based regenerative multi-relay cooperative system over non-homogeneous scattering environment. Novel exact and asymptotic expressions are derived for the end-to-end average SER for M -QAM and M -PSK modulations.The offered results are employed in performance investigations and power allocation formulations under total transmit power constraints.Finally, the thesis investigates outage performance, OPA and energy optimization analysis under certain system constraints for the FD and half-duplex (HD) relaying systems. Unlike the previous studies that considered the scenario of information transmission over symmetric fading conditions, in this study we considered the scenario of information transmission over the most generalized asymmetric fading environments.The obtained results indicate that depending on the severity of multipath fading, the spatial correlation between the direct and relayed paths and the relay location, the direct transmission is more energy-efficient only for rather short transmission distances and until a certain threshold. Beyond this, the system beneļ¬ts substantially from the cooperative transmission approach where the cooperation gain increases as the transmission distance increases. Furthermore, the investigations on the power allocation for the multi-relay system over the generalized small-scale fading model show that substantial performance gain can be achieved by the proposed power allocation scheme over the conventional equal power allocation (EPA) scheme when the source-relay and relay-destination paths are highly unbalanced. Extensive studies on the FD relay system also show that OPA provides signiļ¬cant performance gain over the EPA scheme when the relay SI level is relatively strong. In addition, it is shown that the FD relaying scheme is more energy-efficient than the reference HD relaying scheme at long transmission distances and for moderate relay SI levels.In general, the investigations in this thesis provide tools, results and useful insights for implementing space-efficient, low-cost and energy-efficient cooperative networks, speciļ¬cally, towards the future green communication era where the optimization of the scarce resources is critical
    • ā€¦
    corecore