2,053 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Data Transmission with Reduced Delay for Distributed Acoustic Sensors

    Full text link
    This paper proposes a channel access control scheme fit to dense acoustic sensor nodes in a sensor network. In the considered scenario, multiple acoustic sensor nodes within communication range of a cluster head are grouped into clusters. Acoustic sensor nodes in a cluster detect acoustic signals and convert them into electric signals (packets). Detection by acoustic sensors can be executed periodically or randomly and random detection by acoustic sensors is event driven. As a result, each acoustic sensor generates their packets (50bytes each) periodically or randomly over short time intervals (400ms~4seconds) and transmits directly to a cluster head (coordinator node). Our approach proposes to use a slotted carrier sense multiple access. All acoustic sensor nodes in a cluster are allocated to time slots and the number of allocated sensor nodes to each time slot is uniform. All sensor nodes allocated to a time slot listen for packet transmission from the beginning of the time slot for a duration proportional to their priority. The first node that detect the channel to be free for its whole window is allowed to transmit. The order of packet transmissions with the acoustic sensor nodes in the time slot is autonomously adjusted according to the history of packet transmissions in the time slot. In simulations, performances of the proposed scheme are demonstrated by the comparisons with other low rate wireless channel access schemes.Comment: Accepted to IJDSN, final preprinted versio

    Cognition-inspired 5G cellular networks: a review and the road ahead

    Get PDF
    Despite the evolution of cellular networks, spectrum scarcity and the lack of intelligent and autonomous capabilities remain a cause for concern. These problems have resulted in low network capacity, high signaling overhead, inefficient data forwarding, and low scalability, which are expected to persist as the stumbling blocks to deploy, support and scale next-generation applications, including smart city and virtual reality. Fifth-generation (5G) cellular networking, along with its salient operational characteristics - including the cognitive and cooperative capabilities, network virtualization, and traffic offload - can address these limitations to cater to future scenarios characterized by highly heterogeneous, ultra-dense, and highly variable environments. Cognitive radio (CR) and cognition cycle (CC) are key enabling technologies for 5G. CR enables nodes to explore and use underutilized licensed channels; while CC has been embedded in CR nodes to learn new knowledge and adapt to network dynamics. CR and CC have brought advantages to a cognition-inspired 5G cellular network, including addressing the spectrum scarcity problem, promoting interoperation among heterogeneous entities, and providing intelligence and autonomous capabilities to support 5G core operations, such as smart beamforming. In this paper, we present the attributes of 5G and existing state of the art focusing on how CR and CC have been adopted in 5G to provide spectral efficiency, energy efficiency, improved quality of service and experience, and cost efficiency. This main contribution of this paper is to complement recent work by focusing on the networking aspect of CR and CC applied to 5G due to the urgent need to investigate, as well as to further enhance, CR and CC as core mechanisms to support 5G. This paper is aspired to establish a foundation and to spark new research interest in this topic. Open research opportunities and platform implementation are also presented to stimulate new research initiatives in this exciting area

    A Two-Stage Allocation Scheme for Delay-Sensitive Services in Dense Vehicular Networks

    Full text link
    Driven by the rapid development of wireless communication system, more and more vehicular services can be efficiently supported via vehicle-to-everything (V2X) communications. In order to allocate radio resource with the reasonable implementation complexity in dense urban intersection, a two-stage allocation algorithm is proposed in this paper, whose main objective is to minimize delay and ensure reliability. In particular, as for the first stage, the allocation policy is based on traffic density information (TDI), which is different from utilizing channel state information (CSI) and queue state information (QSI) in the second stage. Moreover, in order to reflect the influence of TDI on delay, a macroscopic vehicular mobility model is employed in this paper. Simulation results show that the proposed algorithm can acquire an asymptotically optimal performance with the acceptable complexity
    • …
    corecore