60 research outputs found

    Service differentiation in OFDM-Based IEEE 802.16 networks

    Get PDF
    IEEE 802.16 network is widely viewed as a strong candidate solution for broadband wireless access systems. Various flexible mechanisms related to QoS provisioning have been specified for uplink traffic at the medium access control (MAC) layer in the standards. Among the mechanisms, bandwidth request scheme can be used to indicate and request bandwidth demands to the base station for different services. Due to the diverse QoS requirements of the applications, service differentiation (SD) is desirable for the bandwidth request scheme. In this paper, we propose several SD approaches. The approaches are based on the contention-based bandwidth request scheme and achieved by the means of assigning different channel access parameters and/or bandwidth allocation priorities to different services. Additionally, we propose effective analytical model to study the impacts of the SD approaches, which can be used for the configuration and optimization of the SD services. It is observed from simulations that the analytical model has high accuracy. Service can be efficiently differentiated with initial backoff window in terms of throughput and channel access delay. Moreover, the service differentiation can be improved if combined with the bandwidth allocation priority approach without adverse impacts on the overall system throughput

    Designing a Frequency Selective Scheduler for WiMAX using Genetic Algorithms

    Get PDF
    Projecte final de carrera fet en col.laboraciĂł amb University of Stuttgar

    On the Merits of Deploying TDM-based Next-Generation PON Solutions in the Access Arena As Multiservice, All Packet-Based 4G Mobile Backhaul RAN Architecture

    Full text link
    The phenomenal growth of mobile backhaul capacity required to support the emerging fourth-generation (4G) traffic including mobile WiMAX, cellular Long-Term Evolution (LTE), and LTE-Advanced (LTE-A) requires rapid migration from today\u27s legacy circuit switched T1/E1 wireline and microwave backhaul technologies to a new fiber-supported, all-packet-based mobile backhaul infrastructure. Clearly, a cost effective fiber supported all-packet-based mobile backhaul radio access network (RAN) architecture that is compatible with these inherently distributed 4G RAN architectures is needed to efficiently scale current mobile backhaul networks. However, deploying a green fiber-based mobile backhaul infrastructure is a costly proposition mainly due to the significant cost associated with digging the trenches in which the fiber is to be laid. These, along with the inevitable trend towards all-IP/Ethernet transport protocols and packet switched networks, have prompted many carriers around the world to consider the potential of utilizing the existing fiber-based Passive Optical Network (PON) access infrastructure as an all-packet-based converged fixed-mobile optical access networking transport architecture to backhaul both mobile and typical wireline traffic. Passive Optical Network (PON)-based fiber-to-the-curb/home (FTTC/FTTH) access networks are being deployed around the globe based on two Time-Division Multiplexed (TDM) standards: ITU G.984 Gigabit PON (GPON) and IEEE 802.ah Ethernet PON (EPON). A PON connects a group of Optical Network Units (ONUs) located at the subscriber premises to an Optical Line Terminal (OLT) located at the service provider\u27s facility. It is the purpose of this thesis to examine the technological requirements and assess the performance analysis and feasibility for deploying TDM-based next-generation (NG) PON solutions in the access arena as multiservice, all packet-based 4G mobile backhaul RAN and/or converged fixed-mobile optical networking architecture. Specifically, this work proposes and devises a simple and cost-effective 10G-EPON-based 4G mobile backhaul RAN architecture that efficiently transports and supports a wide range of existing and emerging fixed-mobile advanced multimedia applications and services along with the diverse quality of service (QoS), rate, and reliability requirements set by these services. The techno-economics merits of utilizing PON-based 4G RAN architecture versus that of traditional 4G (mobile WiMAX and LTE) RAN will be thoroughly examine and quantified. To achieve our objective, we utilize the existing fiber-based PON access infrastructure with novel ring-based distribution access network and wireless-enabled OLT and ONUs as the multiservice packet-based 4G mobile backhaul RAN infrastructure. Specifically, to simplify the implementation of such a complex undertaking, this work is divided into two sequential phases. In the first phase, we examine and quantify the overall performance of the standalone ring-based 10G-EPON architecture (just the wireline part without overlaying/incorporating the wireless part (4G RAN)) via modeling and simulations. We then assemble the basic building blocks, components, and sub-systems required to build up a proof-of-concept prototype testbed for the standalone ring-based EPON architecture. The testbed will be used to verify and demonstrate the performance of the standalone architecture, specifically, in terms of power budget, scalability, and reach. In the second phase, we develop an integrated framework for the efficient interworking between the two wireline PON and 4G mobile access technologies, particularly, in terms of unified network control and management (NCM) operations. Specifically, we address the key technical challenges associated with tailoring a typically centralized PON-based access architecture to interwork with and support a distributed 4G RAN architecture and associated radio NCM operations. This is achieved via introducing and developing several salient-networking innovations that collectively enable the standalone EPON architecture to support a fully distributed 4G mobile backhaul RAN and/or a truly unified NG-PON-4G access networking architecture. These include a fully distributed control plane that enables intercommunication among the access nodes (ONUs/BSs) as well as signaling, scheduling algorithms, and handoff procedures that operate in a distributed manner. Overall, the proposed NG-PON architecture constitutes a complete networking paradigm shift from the typically centralized PON\u27s architecture and OLT-based NCM operations to a new disruptive fully distributed PON\u27s architecture and NCM operations in which all the typically centralized OLT-based PON\u27s NCM operations are migrated to and independently implemented by the access nodes (ONUs) in a distributed manner. This requires migrating most of the typically centralized wireline and radio control and user-plane functionalities such as dynamic bandwidth allocation (DBA), queue management and packet scheduling, handover control, radio resource management, admission control, etc., typically implemented in today\u27s OLT/RNC, to the access nodes (ONUs/4G BSs). It is shown that the overall performance of the proposed EPON-based 4G backhaul including both the RAN and Mobile Packet Core (MPC) {Evolved Packet Core (EPC) per 3GPP LTE\u27s standard} is significantly augmented compared to that of the typical 4G RAN, specifically, in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. Furthermore, the proposed architecture enables redistributing some of the intelligence and NCM operations currently centralized in the MPC platform out into the access nodes of the mobile RAN. Specifically, as this work will show, it enables offloading sizable fraction of the mobile signaling as well as actual local upstream traffic transport and processing (LTE bearers switch/set-up, retain, and tear-down and associated signaling commands from the BSs to the EPC and vice-versa) from the EPC to the access nodes (ONUs/BSs). This has a significant impact on the performance of the EPC. First, it frees up a sizable fraction of the badly needed network resources as well as processing on the overloaded centralized serving nodes (AGW) in the MPC. Second, it frees up capacity and sessions on the typically congested mobile backhaul from the BSs to the EPC and vice-versa

    Energy efficiency in next generation wireless networks: methodologies, solutions and algorithms

    Get PDF
    Mobile Broadband Wireless Access (BWA) networks will offer in the forthcoming years multiple and differentiated services to users with high mobility requirements, connecting via portable or wearable devices which rely on the use of batteries by necessity. Since such devices consume a relatively large fraction of energy for transmitting/receiving data over-the-air, mechanisms are needed to reduce power consumption, in order to increase the lifetime of devices and hence improve user’s satisfaction. Next generation wireless network standards define power saving functions at the Medium Access Control (MAC) layer, which allow user terminals to switch off the radio transceiver during open traffic sessions for greatest energy consumption reduction. However, enabling power saving usually increases the transmission latency, which can negatively affect the Quality of Service (QoS) experienced by users. On the other hand, imposing stringent QoS requirements may limit the amount of energy that can be saved. The IEEE 802.16e standard defines the sleep mode is power saving mechanism with the purpose of reducing energy consumption. Three different operation classes are provided, each one to serve different class of traffic: class I, best effort traffic, class II real time traffic and class III multicast traffic. Several aspects of the sleep mode are left unspecified, as it is usually done in standards, allowing manufacturers to implement their own proprietary solutions, thus gaining a competitive advantage over the rivals. The work of this thesis is aimed at verifying, the effectiveness of the power saving mechanism proposed into IEEE 802.16e standard, focusing on the mutual interaction between power saving and QoS support. Two types of delay constrained applications with different requirements are considered, i.e., Web and Voice over IP (VoIP). The performance is assessed via detailed packet-level simulation, with respect to several system parameters. To capture the relative contribution of all the factors on the energy- and QoS-related metrics, part of the evaluation is carried out by means of 2k · r! analysis. Our study shows that the sleep mode can achieve significant power consumption reduction, however, when real time traffic is considered a wise configuration of the parameters is mandatory in order to avoid unacceptable degradation of the QoS. Finally, based on the guidelines drawn through the analysis, we extend our contribution beyond a simple evaluation, proposing a power saving aware scheduling framework aimed at reducing further the energy consumption. Our framework integrates with existing scheduling policies that can pursue their original goals, e.g. maximizing throughput or fairness, while improving the energy efficiency of the user terminals. Its effectiveness is assessed through an extensive packet level simulation campaign

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Designing a Frequency Selective Scheduler for WiMAX using Genetic Algorithms

    Get PDF
    Projecte final de carrera fet en col.laboraciĂł amb University of Stuttgar

    Performance analysis of 4G wireless networks using system level simulator

    Get PDF
    Doutoramento em Engenharia ElectrotĂ©cnicaIn the last decade, mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. In particular, a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation (4G). 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigms). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications (i.e. YouTube and Skype) to be available in the near future. Therefore, 4G wireless communications system will be of paramount importance on the development of the information society in the near future. As 4G wireless services will continue to increase, this will put more and more pressure on the spectrum availability. There is a worldwide recognition that methods of spectrum managements have reached their limit and are no longer optimal, therefore new paradigms must be sought. Studies show that most of the assigned spectrum is under-utilized, thus the problem in most cases is inefficient spectrum management rather spectrum shortage. There are currently trends towards a more liberalized approach of spectrum management, which are tightly linked to what is commonly termed as Cognitive Radio (CR). Furthermore, conventional deployment of 4G wireless systems (one BS in cell and mobile deploy around it) are known to have problems in providing fairness (users closer to the BS are more benefited relatively to the cell edge users) and in covering some zones affected by shadowing, therefore the use of relays has been proposed as a solution. To evaluate and analyse the performances of 4G wireless systems software tools are normally used. Software tools have become more and more mature in recent years and their need to provide a high level evaluation of proposed algorithms and protocols is now more important. The system level simulation (SLS) tools provide a fundamental and flexible way to test all the envisioned algorithms and protocols under realistic conditions, without the need to deal with the problems of live networks or reduced scope prototypes. Furthermore, the tools allow network designers a rapid collection of a wide range of performance metrics that are useful for the analysis and optimization of different algorithms. This dissertation proposes the design and implementation of conventional system level simulator (SLS), which afterwards enhances for the 4G wireless technologies namely cognitive Radios (IEEE802.22) and Relays (IEEE802.16j). SLS is then used for the analysis of proposed algorithms and protocols.FC

    A Novel Approach for Implementing Worldwide Interoperability for Microwave Access for Video Surveillance

    Get PDF
    Video surveillance applications have experienced an increase in demand over the last decade. Surveillance systems can easily be found in places such as commercial offices, banks and traffic intersections, parks and recreational areas. Surveillance applications have the potential to be implemented on a WiMAX (Worldwide Interoperability for Microwave Access) network. Moreover, WiMAX devices have been used widely in the market and WiMAX-based video surveillance products have also been available. As a radio technology, WiMAX is a wireless broadband system that offers greater capacity than WiFi networks and wider coverage than cellular networks. The acceptance of WiMAX in the market, the availability of WiMAX products and its technology excellence, contribute to the possibility of implementing it for surveillance application. However, since WiMAX is designed to accommodate various applications with different quality of service (QoS) requirements, dedicated surveillance network implementation of WiMAX may not achieve optimum performance, as all Subscriber Stations (SSs) generate the same QoS requirements. In the medium access (MAC) layer, this thesis proposes a bandwidth allocation scheme that considers the QoS uniformity of the traffic sources. The proposed bandwidth allocation scheme comprises a simplified bandwidth allocation architecture, a packet-aware bandwidth request mechanism and packet-aware scheduling algorithms. The simplified architecture maximizes resources in the Base Station (BS), deactivates unnecessary services and minimizes the processing delay. The proposed bandwidth request mechanism reduces bandwidth grant and transmission delays. The proposed scheduling algorithms prioritize bandwidth granting access to a request that contains important packet(s). The proposed methods in the MAC layer are designed to be applied to existing devices in the market, without the necessity to change hardware. The transport protocol should be able to deliver video with sufficient quality while maintaining low delay connectivity. The proposed transport layer protocol is therefore designed to improve the existing user datagram protocol (UDP) performance by retransmitting packet loss selectively to increase the received video quality, and utilizing MAC support to achieve low delay connectivity. In order to overcome the limitations of the lower layers, this thesis employs a rateless code instead of transport layer redundancy in the application layer. Moreover, this thesis proposes post-decoding error concealment techniques as the last means to overcome packet loss. To evaluate the performances of the proposed methods, simulations are carried out using NS-2 simulator on Linux platform. The proposed methods are compared to existing works to measure their effectiveness. To facilitate the implementation of the transport layer protocols in practical scenarios, UDP packet modification is applied for each transport layer protocol.Indonesian Directorate General of Higher Education (DGHE/DIKTI
    • 

    corecore