28,801 research outputs found

    Performance models of concurrency control protocols for transaction processing systems

    Get PDF
    Transaction processing plays a key role in a lot of IT infrastructures. It is widely used in a variety of contexts, spanning from database management systems to concurrent programming tools. Transaction processing systems leverage on concurrency control protocols, which allow them to concurrently process transactions preserving essential properties, as isolation and atomicity. Performance is a critical aspect of transaction processing systems, and it is unavoidably affected by the concurrency control. For this reason, methods and techniques to assess and predict the performance of concurrency control protocols are of interest for many IT players, including application designers, developers and system administrators. The analysis and the proper understanding of the impact on the system performance of these protocols require quantitative approaches. Analytical modeling is a practical approach for building cost-effective computer system performance models, enabling us to quantitatively describe the complex dynamics characterizing these systems. In this dissertation we present analytical performance models of concurrency control protocols. We deal with both traditional transaction processing systems, such as database management systems, and emerging ones, as transactional memories. The analysis focuses on widely used protocols, providing detailed performance models and validation studies. In addition, we propose new modeling approaches, which also broaden the scope of our study towards a more realistic, application-oriented, performance analysis

    Graphical modelling language for spycifying concurrency based on CSP

    Get PDF
    Introduced in this (shortened) paper is a graphical modelling language for specifying concurrency in software designs. The language notations are derived from CSP and the resulting designs form CSP diagrams. The notations reflect both data-flow and control-flow aspects of concurrent software architectures. These designs can automatically be described by CSP algebraic expressions that can be used for formal analysis. The designer does not have to be aware of the underlying mathematics. The techniques and rules presented provide guidance to the development of concurrent software architectures. One can detect and reason about compositional conflicts (errors in design), potential deadlocks (errors at run-time), and priority inversion problems (performance burden) at a high level of abstraction. The CSP diagram collaborates with objectoriented modelling languages and structured methods

    An Analytical Model for Evaluating Database Update Schemes

    Get PDF
    A methodology is presented for evaluating the performance of database update schemes. The methodology uses the M/Hr/1 queueing model as a basis for this analysis and makes use of the history of how data is used in the database. Parameters have been introduced which can be set based on the characteristics of a specific system. These include update to retrieval ratio, average file size, overhead, block size and the expected number of items in the database. The analysis is specifically directed toward the support of derived data within the relational model. Three support methods are analyzed. These are first examined in a central database system. The analysis is then extended in order to measure performance in a distributed system. Because concurrency is a major problem in a distributed system, the support of derived data is analyzed with respect to three distributive concurrency control techniques -- master/slave, distributed and synchronized. In addition to its use as a performance predictor, the development of the methodology serves to demonstrate how queueing theory may be used to investigate other related database problems. This is an important benefit due to this lack of fundamental results in the area of using queueing theory to analyze database performance

    Tuning the Level of Concurrency in Software Transactional Memory: An Overview of Recent Analytical, Machine Learning and Mixed Approaches

    Get PDF
    Synchronization transparency offered by Software Transactional Memory (STM) must not come at the expense of run-time efficiency, thus demanding from the STM-designer the inclusion of mechanisms properly oriented to performance and other quality indexes. Particularly, one core issue to cope with in STM is related to exploiting parallelism while also avoiding thrashing phenomena due to excessive transaction rollbacks, caused by excessively high levels of contention on logical resources, namely concurrently accessed data portions. A means to address run-time efficiency consists in dynamically determining the best-suited level of concurrency (number of threads) to be employed for running the application (or specific application phases) on top of the STM layer. For too low levels of concurrency, parallelism can be hampered. Conversely, over-dimensioning the concurrency level may give rise to the aforementioned thrashing phenomena caused by excessive data contention—an aspect which has reflections also on the side of reduced energy-efficiency. In this chapter we overview a set of recent techniques aimed at building “application-specific” performance models that can be exploited to dynamically tune the level of concurrency to the best-suited value. Although they share some base concepts while modeling the system performance vs the degree of concurrency, these techniques rely on disparate methods, such as machine learning or analytic methods (or combinations of the two), and achieve different tradeoffs in terms of the relation between the precision of the performance model and the latency for model instantiation. Implications of the different tradeoffs in real-life scenarios are also discussed

    Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

    Get PDF
    To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs, there are currently no general verification approaches that operate directly on program code without additional annotations. One reason for this is the multitude of partially conflicting semantic formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph transformation system (GTS) based run-time semantics for SCOOP that grasps the most common features of all known semantics of the language. This run-time model is implemented in the state-of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP programs with respect to deadlocks and other behavioural properties. Besides proposing the first approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experiences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time model, which should be transferable to GTS models for other concurrent languages and libraries.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    Analytical/ML Mixed Approach for Concurrency Regulation in Software Transactional Memory

    Get PDF
    In this article we exploit a combination of analytical and Machine Learning (ML) techniques in order to build a performance model allowing to dynamically tune the level of concurrency of applications based on Software Transactional Memory (STM). Our mixed approach has the advantage of reducing the training time of pure machine learning methods, and avoiding approximation errors typically affecting pure analytical approaches. Hence it allows very fast construction of highly reliable performance models, which can be promptly and effectively exploited for optimizing actual application runs. We also present a real implementation of a concurrency regulation architecture, based on the mixed modeling approach, which has been integrated with the open source Tiny STM package, together with experimental data related to runs of applications taken from the STAMP benchmark suite demonstrating the effectiveness of our proposal. © 2014 IEEE
    • 

    corecore