8 research outputs found

    Advanced index modulation techniques for future wireless networks

    Get PDF
    In the research study proposed in this Ph.D Thesis, we consider Index Modulation as a novel tool to enhance energy and spectral efficiencies for upcoming 5G networks, including wireless sensor networks and internet of things. In this vein, spatial modulation was proposed to enhance the capacity of wireless systems to partially achieve the capacity of MIMO systems but at lower cost, making it a technique that has attracted significant attention over the past few years. As such, SM schemes have been regarded as possible candidates for spectrum- and energy-efficient next generation MIMO systems. However, the implementation of the SM is also challenging because of its heavy dependence on channel characteristics, channel correlation, corrupted CSI and the need to have adequate spacing between antennas. Moreover, the SM requires multiple antennas at the transmitter which adds cost to the hardware implementation. In addition, the number of mapped bits in SM is limited by the physical size of the wireless device where only small number of antennas can be used. The switching time wasted by RF antenna switches adds to the complexity of the issue. In this Thesis, we study the drawbacks of SM in the articles indicated, namely Performance Comparison of Spatial Modulation Detectors Under Channel Impairments that is placed in the Appendix at the end of Thesis as it is a conference paper, and The Impact of Antenna Switching Time on Spatial Modulation that is put in Chapter 1. In the first article, we have shown that channel impairments have serious impacts on the BER performance and on the capacity of the SM system and that the SM is too sensitive to both imperfect and correlated channels. In the second article, we have demonstrated that the switching time defined as the time needed by the system to turn off an antenna and turn on another one, which is an inherent property of RF industrial switches used in SM systems, is in the order of nanoseconds and naturally influences the transmission rate of SM systems because of introducing systematic transmission gaps or pauses. Given the speed limitation of practical RF switches in performing transitions, antenna transition-based technologies like SM schemes are capped in terms of data rate performance. In fact, the effective data rate of SM will remain hostage to developments in industrial RF switches. This brings restrictions to the implementation and operation issues when extremely high data rates become a necessity. It is shown by the assemblage of our results that the switching time Tsw which is a requirement for transitions between antennas to happen, dictates restrictions on data rate, capacity and spectral efficiency of SM systems. Furthermore, we propose baseband non-hardware-based indexing modulation schemes based on frequency-index modulation, coherent chaotic modulation and non-coherent differential chaotic modulation schemes as potential alternatives to SM, that would also fit wireless sensor networks and internet of things applications. In this regard, we have proposed three articles. The first article which represents frequency index modulation is called Frequency Index Modulation for Low Complexity Low Energy Communication Networks and is placed in Chapter 2 of this Thesis. In this article, we explore a low complexity multi-user communication system based on frequency index modulation that suits Internet of Things (IoT) applications and we show that such a system would constitute an excellent candidate for wireless sensor applications, where it represents a simpler substitution for frequency-hopping (FH) based architectures, in which the hops carry extra bits. The third article which concerns coherent chaotic modulation is called Design of an Initial-Condition Index Chaos Shift Keying Modulation and is located in Chapter 3. In this article, an initial condition index chaos shift keying modulation is proposed. This design aims to increase the spectral and energy efficiencies to unprecedented levels. The proposed scheme exploits the initial conditions to generate different chaotic sequences to convey extra bits per transmission. In comparison to rival modulation schemes, the results obtained in the proposed work show a promising data rate boost and a competitive performance. The last article employs a non-coherent differential chaotic shift-key system named Permutation Index DCSK Modulation Technique for Secure Multi-User High-Data-Rate Communication Systems that is found in the Appendix. In this original design, where each data frame is divided into two time slots in which the reference chaotic signal is sent in the first time slot and a permuted replica of the reference signal multiplied by the modulating bit is sent in the second time slot, we target enhancing data security, energy and spectral efficiencies. Overall, in light of the high demands for bandwidth and energy efficiencies of futuristic systems, the suggested soft indexing mechanisms are successful candidates with promising results

    Digital Communication System with High Security and High Immunity

    Get PDF
    Today, security issues are increased due to huge data transmissions over communication media such as mobile phones, TV cables, online games, Wi-Fi and satellite transmission etc. for uses such as medical, military or entertainment. This creates a challenge for government and commercial companies to keep these data transmissions secure. Traditional secure ciphers, either block ciphers such as Advanced Encryption Standard (AES) or stream ciphers, are not fast or completely secure. However, the unique properties of a chaotic system, such as structure complexity, deterministic dynamics, random output response and extreme sensitivity to the initial condition, make it motivating for researchers in the field of communication system security. These properties establish an increased relationship between chaos and cryptography that create strong and fast cipher compared to conventional algorithms, which are weak and slow ciphers. Additionally, chaotic synchronisation has sparked many studies on the application of chaos in communication security, for example, the chaotic synchronisation between two different systems in which the transmitter (master system) is driving the receiver (slave system) by its output signal. For this reason, it is essential to design a secure communication system for data transmission in noisy environments that robust to different types of attacks (such as a brute force attack). In this thesis, a digital communication system with high immunity and security, based on a Lorenz stream cipher chaotic signal, has been perfectly applied. A new cryptosystem approach based on Lorenz chaotic systems was designed for secure data transmission. The system uses a stream cipher, in which the encryption key varies continuously in a chaotic manner. Furthermore, one or more of the parameters of the Lorenz generator is controlled by an auxiliary chaotic generator for increased security. In this thesis, the two Lorenz chaotic systems are called the Main Lorenz Generator and the Auxiliary Lorenz Generator. The system was designed using the SIMULINK tool. The system performance in the presence of noise was tested, and the simulation results are provided. Then, the clock-recovery technique is presented, with real-time results of the clock recovery. The receiver demonstrated its ability to recover and lock the clock successfully. Furthermore, the technique for synchronisation between two separate FPGA boards (transmitter and receiver) is detailed, in which the master system transmits specific data to trigger a slave system in order to run synchronously. The real-time results are provided, which show the achieved synchronisation. The receiver was able to recover user data without error, and the real-time results are listed. The randomness test (NIST) results of the Lorenz chaotic signals are also given. Finally, the security analysis determined the system to have a high degree of security compared to other communication systems

    Digital Communication System with High Security and High Immunity

    Get PDF
    Today, security issues are increased due to huge data transmissions over communication media such as mobile phones, TV cables, online games, Wi-Fi and satellite transmission etc. for uses such as medical, military or entertainment. This creates a challenge for government and commercial companies to keep these data transmissions secure. Traditional secure ciphers, either block ciphers such as Advanced Encryption Standard (AES) or stream ciphers, are not fast or completely secure. However, the unique properties of a chaotic system, such as structure complexity, deterministic dynamics, random output response and extreme sensitivity to the initial condition, make it motivating for researchers in the field of communication system security. These properties establish an increased relationship between chaos and cryptography that create strong and fast cipher compared to conventional algorithms, which are weak and slow ciphers. Additionally, chaotic synchronisation has sparked many studies on the application of chaos in communication security, for example, the chaotic synchronisation between two different systems in which the transmitter (master system) is driving the receiver (slave system) by its output signal. For this reason, it is essential to design a secure communication system for data transmission in noisy environments that robust to different types of attacks (such as a brute force attack). In this thesis, a digital communication system with high immunity and security, based on a Lorenz stream cipher chaotic signal, has been perfectly applied. A new cryptosystem approach based on Lorenz chaotic systems was designed for secure data transmission. The system uses a stream cipher, in which the encryption key varies continuously in a chaotic manner. Furthermore, one or more of the parameters of the Lorenz generator is controlled by an auxiliary chaotic generator for increased security. In this thesis, the two Lorenz chaotic systems are called the Main Lorenz Generator and the Auxiliary Lorenz Generator. The system was designed using the SIMULINK tool. The system performance in the presence of noise was tested, and the simulation results are provided. Then, the clock-recovery technique is presented, with real-time results of the clock recovery. The receiver demonstrated its ability to recover and lock the clock successfully. Furthermore, the technique for synchronisation between two separate FPGA boards (transmitter and receiver) is detailed, in which the master system transmits specific data to trigger a slave system in order to run synchronously. The real-time results are provided, which show the achieved synchronisation. The receiver was able to recover user data without error, and the real-time results are listed. The randomness test (NIST) results of the Lorenz chaotic signals are also given. Finally, the security analysis determined the system to have a high degree of security compared to other communication systems

    Optimization and Applications of Modern Wireless Networks and Symmetry

    Get PDF
    Due to the future demands of wireless communications, this book focuses on channel coding, multi-access, network protocol, and the related techniques for IoT/5G. Channel coding is widely used to enhance reliability and spectral efficiency. In particular, low-density parity check (LDPC) codes and polar codes are optimized for next wireless standard. Moreover, advanced network protocol is developed to improve wireless throughput. This invokes a great deal of attention on modern communications

    Performance analysis of chaotic sampling and detection in CS-DCSK UWB system

    Full text link
    © 2016 IEEE. Compressed sensing based noncoherent UWB systems have been proved to be feasible with a sub-Nyquist sampling rate. As a kind of noncoherent UWB systems, code-shifted differential chaos shift keying (CS- DCSK) UWB system has drawn much attention recently. However, its receiver cannot directly be combined with compressed sensing to reduce the sampling rate. With this motivation, in this paper, we redesign the receiver of the CS-DCSK UWB system and further design two compressed sensing based receivers where the measurement matrix is redesigned. Bit error rate (BER) expression is derived over UWB channel. It is shown that the simulation results are in good agreement with the theoretical ones
    corecore